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Abstract 

Multi-objective optimization of an industrial low-density polyethylene (LDPE) tubular 
reactor is carried out at design stage with the following objectives: maximization of monomer 
conversion and minimization of normalized side products (methyl, vinyl, and vinylidene groups), 
both at the reactor end, with end-point constraint on number-average molecular weight (Mn,f) in the 
product. An inequality constraint is also imposed on reactor temperature to avoid run-away condition 
in the tubular reactor. The binary-coded elitist non-dominated sorting genetic algorithm (NSGA-II) 
and its jumping gene (JG) adaptations are used to solve the optimization problem. Both the equality 
and inequality constraints are handled by penalty functions. Only sub-optimal solutions are obtained 
when the equality end-point constraint on Mn,f is imposed. But, correct global optimal solutions can 
be assembled from among the Pareto-optimal sets of several problems involving a softer constraint 
on Mn,f. A systematic approach of constrained-dominance principle for handling constraints is 
applied for the first time in the binary-coded NSGA-II-aJG and NSGA-II-JG, and its performance is 
compared to the penalty function approach.  
 
Introduction  

Low-density polyethylene (LDPE) is one of the most widely used polymers in the world. 
Nearly one quarter of its annual production of 84 million tones worldwide, is produced by high-
pressure technology (Kondratiev and Ivanchev, 2005). Therefore, even small improvement in 
polymer production and/or properties can generate large revenue for the poly-olefins industry. The 
end properties of polymer, viz., tensile strength, stiffness, tenacity etc. are related to molecular 
parameters, which include average molecular weight, polydispersity index, short- and long-chain 
branching, and distribution of functional groups etc. The operating and design variables often 
influence the molecular parameters in non-commensurable ways. Therefore, these applications are 
perfect scenarios for multi-objective optimization (MOO). This article presents enhancement in the 
production, quality and strength of LDPE, simultaneously, by MOO of an industrial high-pressure 
tubular reactor for ethylene polymerization at design stage. The non-dominated sorting genetic 
algorithm (NSGA-II; Deb, 2001) and its jumping gene (JG) adaptations (Simoes et al., 1999; Kasat 
et al., 2003; Man et al., 2004; Shrikant et al., 2006) are used to optimize the reactor performance.  

Many studies on the modeling and simulation of high-pressure tubular reactor to produce 
LDPE have been reported in the literature, which were reviewed by Zabisky et al. (1992) and 
Kiparissides et al. (1993). In contrast, only some studies (Yoon and Rhee, 1985; Mavridis and 
Kiparissides, 1985; Brandolin et al., 1991; Kiparissides et al., 1994; Cervantes et al., 2000; 
Asteasuain et al., 2001; Yao et al., 2004) have appeared on the optimization of LDPE tubular reactor 
in the open literature. But, interestingly, all the studies on modeling used different kinetic parameters 
to simulate the reactor. Zabisky et al. (1992), Kalyon et al. (1994), and Brandolin et al. (1996) used 
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industrial data and tuned the kinetic parameters but they did not provide the complete details of 
either tuned kinetic rate parameters or the reactor data due to proprietary reasons. In our earlier study 
(Agrawal et al., 2006), we modified the model of Asteasuain et al. (2001), simulated an industrial 
high-pressure tubular reactor and tuned the model parameters using reported industrial data 
(Asteasuain et al., 2001). Complete details of the model including parameter values were available in 
Agrawal et al. (2006), and are not reported here for brevity.  

Agrawal et al. (2006) used the developed model for MOO of the industrial LDPE tubular 
reactor at operation stage. The two important objectives considered for optimization were 
maximization of monomer conversion and minimization of normalized side products (short chain 
branches, vinyl, and vinylidene groups), both at the reactor exit. In this study, eleven decision 
variables were used to optimize the operation of the high-pressure tubular reactor for LDPE 
production. The focus of the present study is the optimization of this tubular reactor at design stage 
for multiple objectives, which involves more decision variables and hence is more challenging. As in 
our previous study (Agrawal et al., 2006), binary-coded NSGA-II and its JG adaptations failed to 
converge to the Pareto-optimal set when an hard equality constraint on Mn,f is imposed; however, 
correct global Pareto-optimal points are obtained by running several problems involving softer 
constraints of the type: Mn,f = Mn,d ± an arbitrary number. These interesting results are discussed in 
detail.  

Deb (2001) showed that the penalty parameter for handling constraints by penalty function 
approach plays an important role in multi-objective evolutionary algorithms. If the parameter is not 
chosen properly then it may create a set of infeasible solutions or a poor distribution of solutions. 
Thus, a systematic approach of constrained-dominance principle for handling constraints was 
proposed by Deb (2001). Motivated by these, constrained-dominance principle is successfully 
implemented in the binary-coded NSGA-II-aJG and NSGA-II-JG for handling constraints for the 
first time and its effectiveness is evaluated for design stage optimization of an industrial LDPE 
reactor. 
 
Process Description 

Commercially, LDPE is produced in tubular reactors, which consist of several tubes 
connected together with 180° bends. This is a well-established technology for producing LDPE 
worldwide. The tubular reactor (Asteasuain et al., 2001; Fig. 1) used in our study, is 1390 m long and 
0.05 m in diameter. The tubular reactor is divided into five zones, which are decided due to change 
in jacket fluid temperature and/or introduction of initiators. The monomer (ethylene), solvent (n-
butane), and oxygen (an initiator) are fed into the reactor at 2250 atm and 76°C. The reaction mixture 
is preheated in the first two zones and then initiator, I1, is injected in the third zone to start the 
polymerization reaction. The reaction mixture reaches 325–335°C due to large heat of reaction. 
Therefore, to avoid run-away condition, reactant–product mixture is cooled in the third and fourth 
zones using cooling water flowing counter-currently in the jackets. In order to further increase the 
monomer conversion, initiator, I2, is fed into the fifth zone. Later part of this zone acts as a cooler to 
reduce the mixture temperature to ease separation in downstream operations. The monomer 
conversion per pass is about 30% at the reactor exit. Solvent is used to control the molecular weight 
of polyethylene by the process of chain transfer to the solvent. The number-average molecular 
weight of the polymer at the reactor exit is reported to be 21900 kg/kmol.  

For simulating the industrial LDPE reactor, the dynamic model of Asteasuain et al. (2001) is 
modified to the steady-state model (Agrawal et al., 2006). In brief, the model is based on plug flow 
assumption, and incorporates axial variation of concentration, temperature, pressure and hence 
physical properties, and also several main (Asteasuain et al., 2001) and side reactions, e.g., intra-
molecular chain transfer, chain transfer to polymer, β-scission of secondary and tertiary radicals etc. 
(the latter give the extent of long- and short-chain branching and the amount of unsaturation). Details 
of all the model equations, parameter values, and model validation are reported elsewhere (Agrawal 
et al., 2006). 
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Fig. 1. Schematic diagram of an industrial LDPE reactor (Asteasuain et al., 2001). 

 
Multi-objective Optimization  

For the design stage MOO study of the industrial tubular LDPE reactor, twenty-two decision 
variables are used: the inlet temperature (Tin), the feed flow rates of oxygen (Fo), solvent (FS) and the 
two additional initiators (FI,1, and FI,2) added in-between, the five average jacket fluid temperatures 
(TJ,1 − TJ,5), the inlet pressure (Pin), the axial lengths of five zones (Lz1 – Lz5), inside diameter (Dint), 
jacket diameter (DJacket), and flow rates of the jacket fluid (VJ,2 − VJ,5). Note that Dint and DJacket are 
constant for all zones. Saturated steam is used to preheat the reaction mixture in the first zone and 
therefore jacket fluid flow rate for zone one (VJ,1) is not included as a decision variable. The 
monomer feed rate (FM) to the reactor is kept constant in this study. The details of the MOO problem 
for simultaneous maximization of conversion and minimization of normalized side products at the 
reactor exit are shown in Eq. 1. The variables: Lz1 – Lz5, Dint and DJacket are allowed to vary within ± 
20% of their reference values (mostly industrial values). The bounds for VJ,2 − VJ,5 are chosen based 
on industrial practice (Kalyon et al., 1994). Lower limit of FS is changed to 5 × 10-2 kg/s (it was 2 × 
10-2 kg/s in operation stage optimization) because simulation was found taking an excessive CPU 
time for some chromosomes. Bounds on other decision variables are same as in our previous study 
(Agrawal et al., 2006).  

A local constraint, Tmax(z) ≤ Tmax,d (= 610.15 K), is imposed on the temperature in the reactor 
to ensure safety, while the number average molecular weight, Mn,f of the product is constrained to lie 
(exactly) at a desired value  (Mn,d = 21,900 kg/kmol). Both the equality and inequality constraints are 
incorporated in the objective functions in the form of penalty functions with weighting factors of w1 
= 109 and w2 = 1010, respectively. This is not required if constraints are handled directly through the 
constrained-dominance principle. Mathematical formulation of above problem as follows: 
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Subjected to the following bounds: 
5 × 10-5 ≤ Fo ≤ 10 × 10-5 kg/s                             (c)  
2 × 10-2 ≤ FS ≤ 0.5 kg/s      (d)  
5 × 10-5 ≤ FI,1 ≤ 5 × 10-3 kg/s                      (e)  
5 × 10-5 ≤ F I,2 ≤ 5 × 10-3 kg/s                              (f) 
413.15 ≤ T J,m ≤ 543.15 K ;  m = 1, 4, 5                         (g)  
473.15 ≤ T J,n ≤ 543.15 K ;  n = 2, 3                         (h)  
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182.39 ≤ Pin ≤ 248.25 MPa              (i) 
50 ≤ Lz1 ≤ 70 m       (j) 
80 ≤ Lz2 ≤ 120 m (k) 
140 ≤ Lz3 ≤ 220 m   (l) 
400 ≤ Lz4 ≤ 600 m   (m) 
430 ≤ Lz5 ≤ 650 m                                                                                (n) 
0.04 ≤ Dint ≤ 0.06 m                                                                       (o)  
0.1778 ≤ DJacket ≤ 0.2286 m   (p) 
0.5 × 10-3 ≤ VJ,m ≤ 25 × 10-3 m3/s ; m = 2, 3, 4   (q) 
0.1 × 10-3 ≤ VJ,5 ≤ 25 × 10-3 m3/s                                                                         (r) 
 
Local constraints: 
Model equations (Agrawal et al., 2006)                                                              (s)    (1) 
 
 Preliminary optimization results showed that the jacket fluid velocities in second and third 
zones were becoming quite low and consequently large temperature change in the jacket fluid. 
Therefore, constraints on jacket fluid velocities were added in the mathematical formulation as 
shown in Eq. 2. These bounds on the jacket fluid velocities are based on the typical range reported in 
the literature (Coulson et al., 1996). 
 
0.3 ≤ vJ,m ≤ 1.0 m/s; m = 2, . . . , 5                                                                           (2) 
 
Results and Discussion  

The MOO problem was solved using NSGA-II and its JG adaptations. Initially, penalty 
function approach was employed for handling constraints. The best values of the computational 
parameters in the NSGA-II algorithms for generating solutions of the design problem are provided in 
Table 1. These values for NSGA-II are same as those used in operation stage MOO as reported in 
Agrawal et al. (2006). The computer code was run on a HP workstation (3.60 GHz and 3.25GB 
RAM). The CPU time on this machine was nearly 8 hours for a typical optimization run for 1000 
generations involving 200 chromosomes. This machine can perform 325 MFlops according to the 
LINPACK program (available at http://www.netlib.org) for a matrix of the order of 500.  

 
Table 1. Values of the computational parameters used in binary-coded NSGA-II, NSGA-II-JG, and 

NSGA-II-aJG for two-objective design optimization problem 
 Penalty function approach Constrained-dominance principle 

Parameter NSGA-II NSGA-II-
JG 

NSGA-II-
aJG 

NSGA-II NSGA-II-
JG 

NSGA-II-
aJG 

Ngen* 3000 3300 2500 4500 3200 3000 
Npop 200 200 200 200 200 200 
lsubstr 30 30 30 30 30 30 
lchrom 660 660 660 660 660 660 
laJG --- --- 70 --- --- 70 
pc 0.95 0.9 0.8 0.95 0.9 0.8 
pm 0.015 0.005 0.01 0.015 0.005 0.01 
pJG --- 0.8 0.8 --- 0.6 0.3 
Sr 0.95 0.9 0.6 0.95 0.3 0.1 

* Number of generations required for convergence for the case of Mn,f = 21900 ± 200 kg/kmol 
 

First, the design problem with the equality constraint on number-average molecular weight 
was solved using NSGA-II. It was observed that some non-dominated solutions were obtained rather 
than the Pareto-optimal solutions (Fig. 2), which are perhaps the local optimal solutions. NSGA-II 
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took a large number (10000) of generations to give the converged solutions for this case. Now, the 
end-point constraint on Mn,f was relaxed to lie within ±1% (which is well within the experimental 
error) of the desired molecular weight (Mn,d), in particular, Mn,f = 21900 ± 200 kg/kmol, Mn,f = 21900 
± 20 kg/kmol, and Mn,f = 21900 ± 2 kg/kmol. For the first problem of Mn,f = 21900 ± 200 kg/kmol, 
the Pareto-optimal set was obtained using NSGA-II with good distribution (spread) of points as 
shown in Fig. 2. Hereafter, the Pareto-optimal set obtained for Mn,f = 21900 ± 200 kg/kmol case is 
referred as the reference Pareto-optimal set.  
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Fig. 2.  Converged solutions for several end-point constraints on Mn,f using NSGA-II. Numbers in 

parenthesis refer to the number of generations. 
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Fig. 3.  Converged Pareto-optimal sets for Mn,f = 21900 ± 200 kg/kmol using NSGA-II and its JG 

adaptations.  
 
The solutions of second problem (Mn,f = 21900 ± 20 kg/kmol) superimposed on the Pareto-

optimal set of first problem (Fig. 2), giving confidence on the solutions obtained. However, the 
solutions of Mn,f = 21900 ± 0 kg/kmol, are quite far away from the reference Pareto-optimal set. The 
solutions of Mn,f = 21900 ± 2 kg/kmol, which has a small variability in Mn,f, did not converge to the 
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reference Pareto-optimal set, even after 21000 generations (Fig. 2). (NSGA-II-aJG and NSGA-II-JG 
seems to be converging to the same Pareto set in 19500 and 18000 generations, respectively; which 
is discussed later) This shows that NSGA-II is converging to the local or sub-optimal solutions when 
MOO problem includes the equality constraint on molecular weight. 

In order to improve upon the optimization results, NSGA-II-aJG and NSGA-II-JG were 
endeavored. The best values of computational parameters in both these algorithms are also reported 
in Table 1, which are same as in Agrawal et al. (2006). For the Mn,f = 21900 ± 200 kg/kmol case, the 
converged Pareto-optimal sets for NSGA-II, NSGA-II-JG, and NSGA-II-aJG are shown in Fig. 3. 
NSGA-II-aJG produced the best Pareto-optimal set in terms of convergence and distribution of 
points followed by NSGA-II-JG. The converged Pareto front using NSGA-II has some non-optimal 
solutions, a large intermittent break, and limited diversity of solutions. In addition, NSGA-II-aJG 
took the least number of generations (2500) in converging to Pareto-optimal solutions in comparison 
to NSGA-II-JG (3300) and NSGA-II (3000). 
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Fig. 4. Converged Pareto sets for problems having different end-point constraints on Mn,f using 

NSGA-II-aJG.  
   

The converged Pareto-optimal sets are shown in Fig. 4 for various end-point constraints on 
Mn,f (± 200 kg/kmol, ± 20 kg/kmol, and ± 2 kg/kmol) using NSGA-II-aJG. Mn,f = 21900 ± 20 
kg/kmol showed slow convergence and took 9000 generations to converge to the reference Pareto-
optimal set of Mn,f = 21900 ± 200 kg/kmol, whereas Mn,f = 21900 ± 2 kg/kmol required 19500 
generations to nearly converge to the same. Similarly, NSGA-II-JG converged to the reference 
Pareto set for Mn,f = 21900 ± 20 kg/kmol in 14000 generations, whereas Mn,f = 21900 ± 2 kg/kmol 
took 18000 generations to nearly converge to the reference Pareto (Fig. 5). Fig. 6 shows the 
converged Pareto-optimal sets for the Mn,f = 21900 ± 2 kg/kmol case using NSGA-II and its JG 
variants. It is clear from the figure that Pareto-optimal sets using NSGA-II-JG and NSGA-II-aJG 
were closer to the reference Pareto set than that using NSGA-II for Mn,f = 21900 ± 2 kg/kmol case. 
However, neither NSGA-II, NSGA-II-JG nor NSGA-II-aJG could converge to the reference (for Mn,f 
= 21900 ± 200 kg/kmol) Pareto set for Mn,f = 21900 ± 0 kg/kmol case. Similar results were obtained 
in our earlier study on the MOO of tubular reactor at operation stage (Agrawal et al., 2006). 
Therefore, all these results indicate that either the solutions for equality constraint on Mn,f  are local 
optimal solutions or NSGA algorithms have failed. 
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Fig. 5. Converged Pareto sets for problems having different end-point constraints on Mn,f using 

NSGA-II-JG.  
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Fig. 6.  Converged Pareto sets for Mn,f = 21900 ± 2 kg/kmol using NSGA-II and its JG adaptations. 
Results for NSGA-II-aJG (19500) and NSGA-II-JG (21000) are the same as those in Figs. 4 and 5, 

respectively. 
 

 The non-dominated solutions satisfying Mn,f = 21900 ± 2 kg/kmol were collected from the 
Pareto-optimal sets of Mn,f = 21900 ± 200 kg/kmol and Mn,f = 21900 ± 20 kg/kmol cases using 
NSGA-II-aJG, and are shown in Fig. 7; three (shown by open squares) and eight (shown by open 
triangles) solutions were collected, respectively, from these cases. These solutions were found to be 
covering the whole range of the reference Pareto set whereas single run of 21900 ± 2 kg/kmol case 
distributes the non-dominated solutions in the higher conversion side (Fig. 4). High-conversion 
solutions are undesirable since decision maker might be interested in operating the plant at low 
conversion to produce higher product quality and strength (low side product concentration). Also, 
Mn,f = 21900 ± 2 kg/kmol required almost 18000 generations to converge; therefore, it involves 
enormous amount of CPU time. In the same CPU time, one could run four optimization cases of Mn,f 
= 21900 ± 200 kg/kmol (with different seeds or by different algorithms) or two cases of Mn,f = 21900 
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± 20 kg/kmol. Therefore, we suggest to obtain diversified solutions near to hard equality constraints 
on Mn,f by identifying the points from among the Pareto-optimal sets of various softer constraints of 
type Mn,f = Mn,d ± arbitrary number. 
 
Constraint Handling by Constrained-Dominance Principle 

We tried to improve the performance of NSGA-II and its JG variants by incorporating 
constrained-dominance principle instead of penalty function for constraint handling. Deb (2001) 
showed that the penalty parameter for handling constraints plays an important role in multi-objective 
evolutionary algorithms. If the parameter is not chosen properly then it may create a set of infeasible 
solutions or a poor distribution of solutions. Therefore, the approach of constrained-dominance 
principle for handling constraints in MOO was proposed by Deb et al. (2002). Then, the design of an 
industrial LDPE tubular reactor is optimized for two-objectives using NSGA-II and its JG variants 
with constrained-dominance principle to handle the constraints. The results obtained are compared 
to those obtained with the penalty function method for constraint-handling in NSGA-II-aJG.  
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Fig. 7. Points satisfying Mn,f = 21900 ± 2 kg/kmol from among the Pareto sets of Mn,f = 21900 ± 200 

kg/kmol and Mn,f = 21900 ± 20 kg/kmol cases using NSGA-II-aJG.  
 

The best values of computational parameters in NSGA-II-aJG, NSGA-II, and NSGA-II-JG 
are obtained for constrained-dominance principle, and these are listed in Table 1. It was observed 
that the performance of NSGA-II-aJG was somewhat dependent on the random seed parameter (Sr) 
and jumping gene probability (pJG) but was practically in-variant to other computational parameters. 
The converged Pareto-optimal set using the constrained-dominance principle has a slightly wider 
range of non-dominated points and is marginally better for the reference case (Mn,f = 21900 ± 200 
kg/kmol) (Fig. 8); but, the constrained-dominance principle took more generations (3000) than the 
penalty function approach (2500). Note that the Pareto set using penalty function approach was not 
improved even after 3000 generations; these results are shown in Fig. 8 for both 2500 and 3000 
generations but with a shift of 0.4 for clarity.  

The Pareto-optimal set for the Mn,f = 21900 ± 2 kg/kmol case using the constrained-
dominance principle is closer to the reference Pareto-optimal set than that using penalty function 
(Fig. 9). Similar results were obtained by the NSGA-II-JG upon inclusion of constrained-dominance 
principle for constraint handling. All these results indicate that the performances of NSGA-II-JG and 
NSGA-II-aJG have marginally improved when constraints are dealt with the systematic approach of 
constrained-dominance principle rather than the penalty function method. The points satisfying Mn,f 
= 21900 ± 2 kg/kmol were collected from the converged Pareto-optimal sets of Mn,f = 21900 ± 200 
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kg/kmol and Mn,f = 21900 ± 20 kg/kmol cases using NSGA-II and its JG variants with constrained-
dominance principle for constraint handling. These points (Fig. 10) show uniform distribution along 
the reference Pareto set. This uniformity could not be captured by any algorithm along with 
constrained-dominance principle when the MOO problem with the constraint: Mn,f = 21900 ± 2 
kg/kmol, was solved using inequality (softer) constraints with rather, non-dominated points were 
accumulated towards the higher end of conversion.   
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Fig. 8. Converged Pareto-optimal sets for Mn,f = 21900 ± 200 kg/kmol using NSGA-II-aJG for 

constrained-dominance principle and penalty function method. Pareto-optimal sets for 2500 and 
3000 generations using the latter method are plotted with a vertical shift to show the convergence. 
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Fig. 9. Pareto-optimal solutions for Mn,f = 21900 ± 2 kg/kmol using NSGA-II-aJG for constrained-
dominance principle and penalty function method. These solutions are compared to those for the 

reference case. 
 

The Pareto-optimal set for the reference case as well as plots of the decision variables 
(optimal values of Tin, TJ,2 – TJ,5 are attaining the lower extreme of the bounds whereas Lz4 – Lz5 are 
reaching their lower bound therefore these variables are not plotted here), and constraints 
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corresponding to the points in the Pareto set obtained by NSGA-II-aJG are shown in Fig. 11. When 
one goes from point A to point C on the Pareto-optimal set, monomer conversion increases at the 
expense of increased side products. The trends of decision variables: Tin, Fo, FS, FI,1, FI,2, TJ,1 − TJ,5, 
and Pin which were used in the operation optimization of LDPE tubular reactor by Agrawal et al. 
(2006), are almost similar to our earlier study, and therefore effect of these variables on the Pareto 
set is not discussed here for the sake of brevity. Rather, the effect of appended decision variables (Lz1 
– Lz5, Dint, DJacket, and VJ,2 − VJ,5) on the reference Pareto set of design optimization is discussed. 
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Fig.10. Points satisfying Mn,f = 21900 ± 2 kg/kmol from among the Pareto sets of Mn,f = 21900 ± 200 

kg/kmol and Mn,f = 21900 ± 20 kg/kmol cases using NSGA-II and its JG adaptations and 
constrained-dominance principle. 

 
The optimum values of Lz4 and Lz5 are reaching their upper bounds. The fourth zone is the 

cooling zone, whereas polymerization reaction takes place in the early part of fifth zone and 
remaining length of it is used to cool the reaction mixture. So, these two zones are cooling zones and 
their longer lengths keep the temperature of the reactant-product mixture low and, in turn, reduce the 
SCB formation. Optimal lengths of second zone (Lz2) are attaining lower values to heat up the 
reaction mixture with higher volumetric flow rate (VJ,2) in the jacket. The optimal solutions of the 
length of first and third zones (Lz1 and Lz3) and internal diameter (Dint) are scattered. Optimal values 
of volumetric jacket fluid flow rates (VJ,2 − VJ,5) are attaining higher values to satisfy the constraints 
on jacket fluid velocities. These improve the turbulence inside the jackets and thus enhances the 
outside film heat transfer coefficient (ho) which is important for good heat transfer, and therefore the 
product quality. Jacket diameter (DJacket) is scattered around at its current operating value.  

The solutions for design optimization are compared to the Pareto-optimal set obtained at 
operation stage optimization for the same case using NSGA-II-aJG (Fig. 11a). The results show 
significant improvement in the Pareto-optimal set for the design case. This improvement is attributed 
to the reactor temperature in design case where the maximum temperature (Tmax; therefore 
temperature inside the whole reactor) is lesser than that found in the operation stage. To illustrate 
this, chromosomes B and B’ (identified in Fig. 11a) are selected from the Pareto-optimal sets of 
design and operation optimization, respectively. Monomer conversion for each of these two 
chromosomes is similar but normalized side products are quite different (Fig. 11a). Profiles for the 
temperature, monomer conversion, and initiator concentrations (CI,1 and CI,2) are generated for these 
chromosomes (along with for chromosomes A and C identified in Fig. 12a), and one shown in Fig. 
12. (In Fig. 12c, CI,1 for chromosome A (– – –) is beyond the limits shown in the y-axis thus its 
profile could not be shown completely; rather, two vertical dashed lines are shown.)  Maximum 
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temperature for chromosomes B and B’ (Fig. 12a) is 499 K and 590 K, respectively. Therefore, the 
side products concentration, which decreases with temperature, is very low in design stage 
optimization. But, the same conversion is achieved due to gradual decomposition (unlike in the 
operation stage optimization) of initiators in the tubular reactor as shown in Fig. 12c. Similar trends 
were observed for chromosome C giving highest conversion, where temperature in the fifth zone is 
below the optimum temperature for decomposition of second initiator (I2) and then temperature of 
reactant-product mixture increases slowly and correspondingly monomer conversion increases (see 
Figs. 12a and b).  
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Fig. 11. Pareto-optimal points and the corresponding decision variables and constraints for   the 

reference case (Mn,f = 21900 ± 200 kg/kmol) using NSGA-II-aJG. 
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Fig. 12. Temperature (T), monomer conversion (XM), and initiator concentrations profiles for 

chromosomes A (---), B (-·-·-·-), B’ (―) and C (− − −) shown in Fig. 11a. 
 



 13

Conclusions 
Design of an industrial tubular reactor for high-pressure polymerization of ethylene is 

optimized for multiple objectives using the elitist binary-coded NSGA-II and its JG adaptations. The 
monomer conversion is maximized and normalized side products are minimized, with constraints on 
Mn,f, reactor temperature, and jacket fluid velocities. The design stage optimization showed 
significant improvement in the reactor performance, when compared with the operation stage 
optimization. The correct global Pareto-optimal solutions could not be obtained by any of the 
NSGA-II, NSGA-II-JG, and NSAG-II-aJG algorithms tried, when the hard equality constraint on 
Mn,f is imposed. Comparison of the Pareto-optimal sets for Mn,f = 21900 ± 2 kg/kmol case obtained 
by the three algorithms showed that NSGA-II-aJG is better than NSGA-II and NSGA-II-JG. 
However, solution of this problem by any algorithm requires a lot of CPU time and the converged 
Pareto is limited to a small range. For the near hard end-point constraints, for instance, Mn,f = 21900 
± 2 kg/kmol, Pareto-optimal solutions over a wider range can be assembled from among the Pareto-
optimal sets of several MOO problems with softer constraints, optimized by NSGA-II and its JG 
adaptations. This approach takes less CPU time too. Constrained-dominance principle worked 
marginally better than the penalty function approach for handling constraints in the binary-coded 
NSGA-II-JG and NSGA-II-aJG.  
 
Notation 
Gi  ith objective function including penalty terms 
laJG  length of the replacing jumping gene 
lchrom  total length (number of binaries) of a chromosome 
lsubstr  length (number of binaries) of a substring representing a decision variable 
Lt  total reactor length (m) 
Lzi  axial length of ith zone (m) 
Ngen  maximum number of generations 
Npop  total number of chromosomes in the population 
pc  crossover probability 
pJG  jumping probability for the JG operator 
pm  mutation probability 
Sr  seed for random number generator 
vJ,i  velocity of coolant in the ith jacket (m/s) 
z  axial distance (m) 
 
Subscripts 
d  desired value 
f  (final) reactor exit 
I,m  mth initiator; m = 1, 2 
in  inlet of reactor 
J  jacket side 
M  monomer 
Me  methyl end group 
O  oxygen (initiator) 
S  solvent 
Vi  vinyl group 
Vid  vinylidene group 
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