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ABSTRACT: Stress transfer is of paramount importance in composite materials, since 
load must be transferred from the matrix to the reinforcement element as efficiently as 
possible in order to fully realize the potential of the latter. In addition, the benefits 
obtained from a given reinforcement are conventionally measured in terms of its volume 
fraction, so efficient usage of the occupied volume places another requirement on a 
successful reinforcement. 
Understanding load transfer is key in Multiwalled carbon nanotubes, for which it is 
known that the intershell interactions are orders of magnitude weaker than those along 
the principal axis. Traditionally stress transfer in composites has been analyzed through 
shear lag load models, which prescribe an interfacial shear stress as a function of the local 
deformation. The present work assumes the validity of continuum mechanics at the scales 
of interest and introduces a different concept called shear transfer efficiency that 
quantifies the ability of a given interface to withstand the shear stress necessary to 
transfer load. The two approaches are demonstrated to be equal for a two-shell structure 
and for larger structures the much simpler shear transfer model is able to reproduce 
numerical solutions of the shear lag model, with reasonable accuracy. The length 
dependence of the effective elastic properties typical of shear lag models is not present in 
the corresponding shear transfer model. 
The models developed based on the shear transfer efficiency are capable of capturing the 
experimentally observed decrease in stiffness as the size of the carbon nanotube structure 
is increased, under a variety of deformation modes. Interestingly, experiments performed 
independently by two research groups are brought into agreement without adjustment of 
parameters. 
 
 
INTRODUCTION 
The interaction between shells in a multi-walled carbon nanotube (MWNT) structure is of 
paramount importance in composite materials applications because the effective 
reinforcement capabilities of a given structure depend strongly on how efficiently it is 
able to transfer the load from the matrix to its interior. This issue remains the subject of 
significant research for theoreticians as well as experimentalists1-4. Uncertainties arise 
primarily from the difficulties in calculating the atomic interactions within the material 
for sliding1. A conventional Lennard-Jones potential5 cannot be directly applied to this 
situation since the separation between layers remains constant. 
We utilize continuum mechanics at the scales of interest and define a parameter that 
while varying from zero to one, spans between frictionless sliding and perfect bonding 
among individual graphene layers6,7. Individual graphene sheets making up the nanotube 
are considered as isotropic hollow cylinders with thickness equal to that of the 
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equilibrium separation between layers. The central idea of this analysis is the description 
of the interface bonding properties through a single parameter termed the shear transfer 
efficiency, k. 
Two loading conditions are of interest: extension and twisting. For both conditions, the 
load is introduced only to the outermost layer, and is transferred to the inner shells 
through interlayer shear transfer. An implicit assumption is that only shearing stresses are 
responsible for load transfer between shells. Normal stress transfer due to Poisson’s 
effects and to the kinematics of the deformation are deemed to be second order due to the 
low value of Poisson’s ratio for graphene and are neglected in the present analysis. 
A comparison with a conventional shear lag model is described based on an approach 
developed elsewhere8,9, and found to be equivalent to the shear transfer model described 
here for a double-walled carbon nanotube (DWNT). For a larger number of walls, shear 
lag analytical solutions10 are very complicated or not possible at all, so numerical 
solutions were generated and compared to the simpler shear transfer model. Excellent 
agreement is found by varying one adjustable parameter which is determined from a 
series of numerical solutions. The length dependence of the effective elastic properties 
typical of shear lag models is not present in the corresponding shear transfer model. 
 
MODEL PARAMETERS 
The separation between individual layers of graphene in a multiwall carbon nanotube is 
assumed to be constant. The structure is determined by specifying either the outer or the 
inner diameter and the number of layers. It is assumed that the layers are commensurate 
to immediate neighbor layers (their chiral vectors are parallel), thereby providing 
optimum conditions for shear transfer2. The family of commensurate carbon nanotubes 
described by (5n, 5n), n = 1,2,3,…, will be employed as a model system. With this 
restriction, some of the conclusions may not be exact for other chiralities. 
 
The elastic constants of graphite are taken as estimates of the properties of MWNT 
layers. The geometry is approximated as depicted in Figure 1. 
 

 
Fig. 1. Equivalent Continuum Geometry 
 



 

EXTENSIONAL DEFORMATION – SHEAR TRANSFER 
The shear transfer model (STM) assumes there is an unknown shear traction acting over 
each interface between concentric cylinders. The maximum value of the unknown 
traction is calculated for the condition of uniform deformation corresponding to perfect 
bonding at the interface, and scaled linearly through a parameter k, the shear transfer 
efficiency. The geometry is defined in Fig. 2. 

 
Fig. 2. Shear Transfer Model for DWNT 
 
The distribution of shear stresses is not relevant, only its integrated effect is. The solution 
is obtained in terms of geometrical parameters and the applied external stress, allowing 
easy extension to cases with variable intershell separation: 
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Finally, it is possible to calculate an effective Young’s modulus for the MWNT structure 
by dividing the applied external stress, σ0 by the deformation calculated for the outermost 
shell. The result follows: 
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where Y is the Young’s modulus graphene and taken as equal for all shells. This result is 
remarkably simple and it allows direct calculation of k if the geometry and the effective 
Young’s modulus of the MWNT system are measured under pure extension. 



Note the definition of the total area AT and the area of the central annulus, A0, are not 
explicit in the previous derivation. The limiting cases corresponding to perfect bonding 
(k=1) and no shear transfer (k=0) lead the following equations for effective Young’s 
Modulus: 
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where A1 is the area of the outermost shell. 
 
Extensional Deformation – Shear Lag Model 
A shear lag model is presented based on the MWNT geometry shown in Figure 2. At any 
location z, a differential element dz, as shown in Figure 3, can be considered to be under 
static equilibrium yielding a relationship between the axial stress in each tube and the 
shear stress acting between tubes. This model assumes a radius-independent value for the 
elastic constants (Young’s modulus is constant for all shells) and the inter-wall 
interaction coefficients are taken as those of graphite18. 
 

 
Fig. 3. Shear Lag Model for DWNT 
 
The development of an analytical solution from a shear lag-type model begins with the 
general equilibrium equations for the following physical situation. Consider the 
equilibrium of a differential element within the two shells of length dz: 
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A linear shear stiffness relationship is assumed to govern the tangential sliding between 
layers. Note that only one component of shear stress is accounted for here. 
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Where u1 and u2 are axial deformations of shells 1 and 2, G is the effective shear modulus 
and h1 is the separation distance between the shells. Taking the derivative of equation (5), 
and combining it with equations (4) yields the relationships: 
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where the first derivatives of deformation are recognized as the axial strains in each tube. 
These have been expressed in terms of stress for a linear elastic material. Global force 
equilibrium applied at any location z allows σ2 to be expressed as a function of σ1. 
 
Boundary conditions are the applied axial stress σ0 at z=L/2 and symmetry of the solution 
at the center of the tube (z=0): 
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The governing equations (6-7) for σ1 and σ2 can be solved by standard techniques 
defining the following parameters: 
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Shear stress between the tubes can be computed using equations (4): 
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The interlayer shear stresses are presented in Figure 4 for a (5,5)/(10,10) DWNT, using 
the standard separation between planar graphite (0.34nm), the shearing modulus for 
graphite (4.5 GPa), and a half MWNT length of 50 nm. 
 
 



 
Fig. 4. Interlayer Shear Stress for DNWT for several values of G 
 
The effective modulus of the DWNT can be calculated from the total displacement of the 
outermost layer, u1(L/2), as follows: 
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The resulting expression for effective Young’s Modulus is: 
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The previous derivations in equations (14)-(15) can be extended to consider a pair of 
hollow CNT. The resulting expression for effective modulus is: 
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Expressions (2) and (16) are of the same form, keeping in mind that the parameters B and 
k span the same physical limits in opposite directions: 
 
     0=k 1=B    0=L    (17) 
 
     1=k 0=B    ∞→L   (18) 
 
The shear transfer model does not exhibit dependence of k upon L, whereas such length 
dependence is inherent to the shear lag model. The dependence of effective Young’s 
modulus on B and k is presented in Figure 5 for a standard set of parameters. 
 

 
Fig. 5. Effective Young’s Modulus of DWNT as a Function of Shear Transfer 
Efficiency 
 
The influence of length on effective modulus can be illustrated by using equation (15) to 
relate B to L, as shown in Figure 6. The dependence of modulus upon length is only 
reflected in the shear lag model. However, it is possible to reflect the length dependence 
within the shear transfer model by equating k=1-B. 
 



 
Fig. 6. Effective Young’s Modulus of DWNT as a Function of Length 
 
Model Comparison for MWNT 
 
Analytical solutions for the shear lag model are not easily obtained beyond two 
concentric cylinders, so numerical solutions must be generated and compared to the 
corresponding equations for the shear transfer model. 
 
Figure 7 presents the maximum shear stress profiles for 2, 3, 4, 5 and 6 layers, keeping all 
other parameters constant, and normalized by the external applied stress. In addition the 
maximum interlayer shear stress is approximately 5 percent of the external stress. The 
profile dependence on the number of layers becomes weaker as the number grows, but 
the overall stiffness of the system is affected by the number of layers dramatically. 
 



 
Fig. 7. Shear Stress profiles for MWNT – Numerical Solutions 
 
As stated by Li and coworkers15 and our previous work11,12, the limiting cases for load 
transfer are always the same: either the load is shared proportionally among all 
constituent nanotubes or only the outer shell carries it all (k=0 and k=1). Figure 8 
presents the effective modulus as a function of length for 2,3,4,5 and 6 walls, normalized 
by the maximum possible value for each case as given by equation (2) setting k=1. 
 

 
Fig. 8. Effective Young’s Modulus for MWNT – Numerical Solutions 
 



The length dependence for effective Young’s modulus increases as the number of layers 
is increased. For the number of layers typically reported by experimenters3,19,20 and the 
accepted values for the elastic constants of graphite18 that have been used in this work, 
the lengths for which stress transfer limitations become irrelevant are on the order of 
microns. This observation is not in agreement with the low values of Young’s modulus 
measured. The reduction of modulus due to length would require test samples of 100 nm 
or less. Yet the length required for modulus tests likely exceeds 1 μm, where there is no 
length dependence. 
 
The numerical solutions can be approximated using equations (2) and (16). A standard 
minimization procedure is followed to calculate the optimum value of the parameter λ 
that reproduces the analytical solution best for each number of walls (the values for up to 
six walls are listed on the legend of Figure 8). The following empirical expression is 
proposed for any number of layers: 
 
         (19) 9432.01617.0 −= nλ
 
The previous expression has been derived from a simple regression based on numerical 
solutions for up to ten-shell MWNT. Its most important limitation is the fact that it is 
based on a specific set of MWNT: (5m,5m). For a different MWNT family, the 
determination of an effective fitting parameter would require the repetition of numerical 
solutions for the new geometry in order to obtain the constants in Equation (19). 
 
Given the fact that both solutions have been demonstrated to be equal for the DWNT, the 
key issue to be noticed is that the much simpler fully analytical solution of the shear 
transfer model is able to approximate the much more complicated numerical solution of 
the shear lag model for any number of layers. However the accuracy of the fit decreases 
as the number of layers increases. This fact is not surprising since the analytical solutions 
for more than two layers involve several eigenvalues as opposed to our single parameter 
approximation. 
 
Conclusions 
 
For extensional deformations, the shear transfer model for MWNT has been compared to 
a shear lag approach similar to that developed by Li and coworkers15,16 and an exact 
equivalence has been found for double-walled nanotubes. Due to the fact that the shear 
transfer model is independent of the distribution of shearing stresses and only takes into 
consideration its integrated effect, the two approaches are not identical. However, a 
simple relationship between the shear transfer efficiency and the effective modulus has 
been established. 
 
For more than two walls the simple shear transfer model can reasonably approximate the 
numerical solution obtained from the shear lag model, but there is no general way to 
estimate the fitting parameter for a large number of layers usually found in experiments. 
An empirical equation based on numerical solutions for up to ten shells has been 
presented. 



 
The length dependence of the effective elastic properties of MWNT is an inherent feature 
of the shear lag model and is not explicitly present in the shear transfer model. A critical 
literature review3,19-21 was conducted with the goal of identifying trends suggesting length 
dependence of modulus, but experimental data is scarce and errors are too large to arrive 
at meaningful conclusions22. Our predictions show that in order to observe changes in 
modulus due to length would require test samples of approximately 100 nm. However, 
typical lengths found in experiments exceed several microns, where it is predicted that 
there is no length dependence. Careful experimental studies aimed at determining length 
dependence on the effective modulus for the systems studied are both important and 
problematic. 
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