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Abstract

Feyzi-Riazi equation of state (PRFR EOS) which is a modification of Peng-Robinson equation of state
is modified in this research. The proposed modification estimates the specific volume of polar and hydrogen-
bonded liquids and vapor pressure of pure substances with greater accuracy while maintaining the ability of
PRFR EOS in predicting critical compressibility factor of pure compounds. The proposed model is applied to
correlate and predict the experimental data of vapor-liquid equilibria (VLE) and liquid densities of various
binary nonideal and polar solutions. For this purpose eight mixing rules (van der Waas, HVO, WS, MHV 1,
MHV2, MHV, LCVM and HVOS) were used. Among the mixing rules considered in this work, only the WS
and the MHV are the best predictive tools. In the G part of the proposed model the NRTL and the UNIQUAC-
type models were used, respectively. NRTL model has weak predictive capabilities due to its temperature-

dependent parameters.
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1. Introduction

Cubic equations of state are frequently used in the chemical and petroleum industries to model
complex phase behavior and to design chemical processes. The main difficulty in using conventional
EOSslike SRK and PR is that they are not accurate in estimation of liquid densities, especially for polar
and hydrogen-bonded fluids. Many modifications have been proposed for these equations that can be
classified as follows:

Volume tranglation methods originally proposed by Peneloux et a.' on SRK EOS and then by
Javeri and Y oungren? on PR EOS.

Methods that consider parameter b as a function of reduced temperature like the works of Feyzi et
al.?, Xu and Sandler!, Wu and Sandler®, Chadron et al.°

Methods that change the temperature-dependency of parameter a, while keeping parameter b a
constant for each component like the modification of SRK-EOS by Mathias and Copeman.’

Although these modifications improve liquid specific volume predictions of non-polar
substances, they are not suitable for polar and substances that form hydrogen bonds.

Recently developed mixing rules have greatly increased the accuracy and range of applicability
of such equations. Cubic equations of state with the classical mixing rules #** can be used over wide
range of temperature and pressure, although they are recommended only for hydrocarbons and the
inorganic gases.

Throughout the chemical manufacturing spectrum, there is the need for vapor-liquid
equilibrium (VLE) models of good accuracy. The emphasis is on the use of recently developed mixing
rules that combine EOS models with excess free-energy (or liquid activity coefficient) models, that is
the new class of EOS- G® models. The EOS- G* models offer much greater flexibility, extrapolation

capability, and reliability of prediction than the conventional van der Waals mixing rule or than through

the direct use of activity coefficient models.



The absence of avalid gas-phase model for polar organic compounds has resulted in difficulties
in describing the vapor-liquid equilibrium of polar mixtures at high temperatures and pressures, and for
describing supercritical extraction processes. Recently, cubic equations of state have become very
powerful in correlating and predicting phase equilibrium behavior for either non-polar or / and polar
systems. This capability comes both from the ability to predict pure component vapor pressure
accurately for polar and non-polar components (Soave *; Mathias *°; Stryjek and Vera™; Twu et al. *>*
) and the latest development of new mixing rules for cubic equations of state Huran and Vidal %
Michelsen *% Dahl and Michelsen %; Twu et al. ?*; Wong and Sandler ).

In this paper, a generalized modification is proposed to improve PRFR EOS * predictions for
liquid specific volume of polar and hydrogen-bonded substances. The difference between this research

and PRFR EOS is that in PRFR model dipole moment was not considered and ¢ and 8 coefficients are

related to acentric factor and reduced dipole moment but the dependency of these parameters to reduced
temperature did not change in comparison with previous model. Then, a combination of this generalized
EOS with recently developed and van der Waals mixing rules was used to improve the VLE behavior of
polar and hydrogen-bonded mixtures. The proposed modification also, is applied to predict liquid

specific volumes of polar and associated fluids that are present in binary mixtures.

Literature background

To extend pure-fluid equations of state to mixtures of nonpolar (or slightly polar) components,
it is customary to use classical one-fluid mixing rules, as proposed by van der Waals . In the one-fluid
theory, it is assumed that the properties of a fluid mixture is identical to those of a hypothetical pure
fluid, at the same temperature and pressure, whose equation-of-state parameters are functions of mole
fraction. In the van der Waals approximation, these functions are quadratic in mole fraction.

For highly nonideal mixtures, however, quadratic mixing rules are inadequate. Several methods

have been proposed to modify the original mixing rules. In many cases the modified mixing rules



include composition-dependent or density-dependent binary interaction parameters. Density-dependent
mixing rules are formulated to obtain a correct representation of mixture properties at both high and low
density regions; in the limit of low density, they reproduce the correct composition dependence of the
mixture second virial coefficient (a quadratic function in mole fraction), whereas in the high-density
limit (or infinite pressure), mixing rules are determined to force agreement with some excess-Gibbs-
energy model for aliquid mixture **. Some authors have suggested mixing rules independent of density,
as suggested by excess Gibbs-energy models. Most of these mixing rules however, violate the
theoretically-based boundary condition that the second viria coefficient must be quadratic in mole

fraction.

3. Proposed method

Reduced dipole moment, which is defined by eq (1), is used as an input parameter in addition to critical

temperature(T, ), critical pressure(P.) and acentric factor () , needed to estimate parameters aand b

in PRFR EOS.
2
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where 4, T, P; are in Debye, K and KPa respectively. The proposed modification which is the modification of

the PRFR EOS *is presented by egs 2-10:

p= RT _ a 2
v—b Vv(v+b)+b(v-Db)
212
a= 0{0.4572355289 RPTC ] )



b= /5(0.0777960739 F;TC ] 4

C

For T, <0.97
a:[0(1+052(1—Tr)+0(3(1—T,)2]2 ©)
p=1+B,0-T)+B0-T,)f ©)
2 .
alzzaij (au,)’ (7)
j=0
2 .
ﬁl = Zblj (a)/ur )J (8)
i=0
2 .
o = Z ; ()’
i=0
)
i=2,3
,Bi = Zbu (w)J (10)
j=0
i=2,3

And for the near critical region 0.97<T, <1.03%
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a isabtained from Eq (11).

where T_,P.,w and u are critical temperature, critical pressure, acentric factor and dipole moment of the

cr o
pure component respectively. These parameters are known as input parameters in the model. All of the other
constants are presented in the Appendix. According to Eq (12) It is obvious that in the critical region acentric
factor should not be greater than 6.22 due to meaningless square root in the first term of this equation. However,
the o function in this work and in PRSV % equation becomes zero at finite temperatures and then rises again

with increasing temperature, which is contrary to the temperature behavior of the attractive force. Therefore,

this work could not be applied for T. >1.94. Moreover, the modification of o in PRSV % takes care of

r
inaccuracies in temperature dependence of the a term at low temperatures. However, since a term is based on
vapor pressure in PRSV EOS , it is not well defined at temperatures above the critical temperature of a
component. Also the value of the o function extrapolated from subcritical conditions tends to increase very
rapidly with temperature at supercritical conditions. This is a problem when dealing with a fluid whose critical
temperature is very low, such as hydrogen ®. In these cases the use of other o functions become necessary. Twu
et al. ™" have made a thorough analysis of this problem and have proposed a new o function that avoids

exterma in the supercritical region and smoothly goes to zero at infinite temperature. Readers interested in



applications to mixtures that contain fluids in the highly supercritical state, such as hydrogen-containing
mixtures, may wish to consider aternative forms such as those presented by Twu et a. >’
It should be notified that Feyzi et al.® did not consider the dependency of parameters to reduced dipole
moment. Furtheremore egs (11) and (12) which represent the critical region are identical to the previous work®.
The procedure for this modification is explained below:

An objective function has been defined to optimize parameters & and S of egs (5) and (6), in such away that

the summation of absolute relative errors in calculating vapor pressure, saturated liquid specific volume and
saturated vapor specific volume by the FR-EOS and those from experimental data of 27 polar and non-polar
substances, using 767 data points with the range of dipole moment from O to 2 Debye, and variation of reduced
temperature between 0.5 and 0.97, are minimized. Note that 18 parameters in egs (5) and (6) are regressed from

27 compounds (Tables 1 and 3) as part of the present work. The objective function used is:

|P§at Psat| | th I&at| |Vg st /9, $t|
F= Z‘ Psat ‘ ‘ VI ,sat ‘ ‘ Vg sat ‘
exp
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(14)

The summations are over al data points. The optimization has been performed by the use of a nonlinear
regression technique.
The optimum values of « and # obtained for each substance are then generalized in terms of reduced

temperature, reduced dipole moment and acentric factor. The generalized equationsfor & and S are expressed

in the egs (5) and (6).

4. Extension to mixtures

In this section we have compared the performance of al the mixing rules introduced in the previous

section and of the PRFR ® and proposed equations of state discussed earlier. Specially, we have considered

the following mixing rules developed in the infinite pressure limit: the one parameter van der Waals model



(vdw) %, the original Huron-Vidal model (HVO) ** % the Wong-Sandler model (WS) % and the
approximate model introducing by Orbey and Sandler *’ as a modification of the Huron and Vidal model
(HVOS). Among the zero-pressure models, the followings were tested: the MHV1 model of Michelsen
(modified Huron-Vidal first-order mixing rule) *°, the MHV2 model of Dahl and Michelsen (modified
Huron-Vidal first-order mixing rule) %, the modified MHV1 by Tochigi et al. ® (MHV) and the linear
combination of HVO and MHV1 models by Boukovalas et a. (LCVM) Z. In al cases we used the Peng-
Robinson EOS as modified by Feyzi et al. ® and the modification of PRFR that is done in this work which

contains regressing new parameters for egs (5) and (6). These optimized parameters were outlined in the
Appendix. [For the MHV2 mode! the parameters ¢, and ¢, to be used with the PRSV * equation were -

0.41754 and -0.00461 ** and with the new EOS were optimized in this work as -0.40676 and -0.00538,
respectively]. We have considered binary systems that are azeotropic- forming and nonideal mixtures that
have highly polar and hydrogen bonding compounds. The predictive and correlative capabilities of the

8132 \which are

models are investigated and compared in this work. Consequently we only used two options
presented below:

In the first option, a simple activity coefficient model (in this case NRTL equation) which its parameters
at or near room temperature ( 25°C) were obtained from they — ¢ methods are used to predict VLE
behavior at higher temperatures. Since the NRTL parameters are temperature dependent, they are fitted to
experimental data to use the model as a correlative tool. The regressed parameters for the NRTL activity
coefficient model are presented in the footnotes of Figures 3-6 at each temperature. The non-randomness
parameter of the model is obtained from DECHEMA Chemistry Series * for the systems for which its value
has been reported, otherwise it was assumes to be 0.3 in VLE calculations, as mentioned by Orbey and
Sandler %,

In the second option the UNIQUAC model was used. Its two temperature-independent parameters
(Au,, andAu,,) were obtained using infinite dilution activity coefficients predicted from UNIFAC model,

as described by Orbey et a. **. These parameters were reported only at 298 K in Table 14. In this case the



model is completely predictive. For each of these options the performance of the PRFR * EOS is compared

with the new EOS.
The parameters of the NRTL and UNIQUAC models have been obtained in two ways which are
introduced below.

Method 1- Using ¥ —¢ method in VLE calculations we obtained the best fit of the model parameters at
or near room temperature and then used them in the mixing rules at all temperatures. With this method we have
examined the predictive capabilities of the Gibbs free energy models.

Method 2- The G* EOS mixing rules are used in VLE calculations and the best fit of parameters are
obtained directly at each temperature. This procedure is used to determine the correlative capabilities of the

Gibbs free energy models.

5. Resultsand Discussion

5.1. Calculation for Pure Polar Compounds

The proposed modified PRFR EOS presented in this work, has been tested for vapor pressure and
volumetric data of some pure compounds and mixtures. Original PR EOS, PRFR EOS, a 4-parameter
equation of state proposed by Jan-Tsai * and PRSV EOS ** have been used for comparison with the
proposed new equation. Data on critical properties, acentric factor and dipole moment are all taken from

Polling et al. .

In all the tables that follow the percent average absolute deviation (Y0AAD) is defined as follows:

% AAD = 1:3'0* z|e><per|mental — calculated|

: (14)
experimental |

The total average absolute deviation in each table has been calculated and is presented in the last row of

each table.



The results of the correlation of saturated vapor and liquid specific volumes are given in Table 1 for
training compounds and in Table 2 for validation compounds.

Results show that the error in the prediction and correlation of saturated liquid volume has been reduced

especialy for liquids that form hydrogen bonds. The influence of introducing dipole moment as an input
parameter in the equation of state is more pronounced in the liquid phase specific volume than the vapor phase.
This can be attributed to the lower relative distances between molecules in the liquid phase than in the vapor
phase. Usually the accuracy in the representation of saturated liquid density leads to a loss of accuracy in the
prediction of vapor density. The reason is that the slopes of their curves are different. Neverthel ess the proposed
modification represents a good compromise. Moreover, one way to improve the poor liquid density predictions
of cubic equations of stateisto allow the hard core parameter b to be temperature dependent *.
Results of vapor pressure and enthalpy of vaporization predictions are given in Tables 3 and 4 for training and
validation compounds respectively. These results aso indicate that the proposed equation predicts vapor
pressure and enthalpy of vaporization of hydrogen bonded compounds more accurately than origina PR, PRFR
and JT equations. Considering polar compounds (1 > 0.5) the average absolute deviation in vapor pressure
calculations shows considerable decrease in comparison with PR, PRFR and JT EOSs. The AAD% for these
substances predicted with the new modification was 2.33 while the corresponding values for PR, PRFR and JT
equations are 5.56, 4.78 and 4.03 for training compounds. For vaidation components the AAD% is 2.28 for the
new EOS and for PR, PRFR and JT EOSs are 4.33, 4.03 and 3.27, respectively.

When our proposed model is compared with a broadly well-known EOS like PRSV ' it is observed that
comparable results are produced for vapor specific volume and enthalpy of vaporization. Liquid specific volume
is predicted and correlated better while vapor pressure predictions and correlations are weaker. Note that the
PRSV eguation includes 1 parameter for each compound, totaling 54 parameters for 54 substances which are
used in our training compounds and validation compounds. In the other words PRSV has a free parameter that
permits an accurate fit to just about any smooth vapor pressure data and it is really a correlation, not prediction.
Stryjek and Vera ™ have introduced ways of adding further species-specific constants to PR EOS to provide

accurate vapor pressure correlations, especially at lower temperatures and for nonhydrocarbon fluids that are
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needed for a better description of vapor-liquid equilibrium. Also, since the ain PR EOS term is based on vapor
pressure, the improvement that was proposed in o term of PRSV has its impact on the accuracy of vapor
pressure.

In our work we have used a total of 767 data points of 27 compounds to correlate 18 parameters of the
proposed equation which is now generalized for all the compounds especially for hydrogen bonded substances.
The new eguation does not require fitting a free parameter each time it encounters a new substance.

In comparison with PR, PRFR and JT eguations of state the proposed model produces more accurate results

for liquid density, enthal py of vaporization and vapor pressure.

In Table 5, the results of the prediction of specific volume of some acohols at different temperatures and

pressures are presented. These results show the superiority of the proposed equation to the others.

5.2. Modelling of binary solutions

Table 6 presents the liquid specific volume of some binary mixtures. Again more accurate results are
observed, especially for the mixtures consisting of at least one polar compound or one compound with hydrogen
bond.

The performances of various equations of state in bubble point and dew point calculations are presented in
Tables 7 and 8, respectively. In these tables, the binary interaction parameter was assumed to be zero and the
conventional van der Waals mixing rules % were used for prediction of bubble and dew points of binary
solutions.

VLE predictions for two different binary mixtures are presented in Figures 1 and 2. In these caculations
ordinary Van der Waals mixing rules with zero interaction coefficient have been used, the slight nonideality of

these systems are predicted well.
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Fig. 1. Comparison of calculated and
experimental vapor-liquid eguilibria for
Hexane (1) + Chlorobenzene (2) system.
Data sourceisref. ¥’

105

Fig. 2. Comparison of caculated and
experimental vapor-liquid equilibria for
2, 2, 4-Trimethylpentane (1) + Toluene

(2) system. Data source is ref. *

The reliability of the proposed model, the PRSV ** EOS and the PRFR ° equation in order to predict phase
equilibria of binary solutions, are compared in Tables 9-12.

In Table 9 the correlative capabilities of the NRTL model combined with the two equations of state are
compared, and in Table 10 the UNIQUAC model is considered as a predictive option. Table 11 gives number of
data points and useful experimental information which was used in Tables 9 and 10. In Table 12, the hydrogen
bonding effect is considered via a particular type of UNIQUAC model, named UNIQUAC-HB . According to
this table, the results for such systems are clearly improved in comparison with Table 10. Since the binary
systems used in Table 12 were selected from Table 9, their experimental conditions and number of data points
should not be presented in another table and only Table 11 is suffice. Experimental has shown that the choice of
an activity coefficient model coupled with the EOS has some effect on the predictive performance of the WS,
HVO, MHV1, MHV2, MHV, LCVM and HVOS models. For example, as the complexity and polarity of the
mixture increases, the NRTL and the UNIQUAC-type models, which have temperature dependent parameters,
usually produce better results over a range of temperatures in comparison with the simple van Laar or Wilson

models **. Consequently these two activity coefficient models were selected here.
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Although the binary interaction parameter in WS mixing rule is set equal to zero, very good results are

obtained with the proposed EOS. This s attributed to introduction of dipole moment as an extra input parameter

to the EOS. The method of using the new mixing rules with the new EOS also improved shortcomings of

proposed EOS to predict highly nonideal polar mixtures as reported previously ** with van der Waals mixing

rule.

10

100 R ——
m--*--" i, |
90 ,.' -

VLE data at 353 K

pressure, KPa

40 Ll L L L L L L L L
0 0102 03 04 05 06 07 08 09 1
mole fraction 2-propanol

Fig 3. VLE correlation of the 2-propanol and water binary
system at 353 K with the Huron-Vidal original (HVO) mixing
rule combined with NRTL excess free-energy model and the
new equation of state. The dashed lines represents calculated
with o =02893 and 7, /7, =0.7902/3.866 Obtained from fitting
the experimental data, and the solid lines denote results
calculated with o=02893 and r,/z, =0.1519/1.8074 Obtained

fromy — ¢ method. Experimental data are from ',
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Fig 4. VLE correlation of the 2-propanol and water binary
system at 523 K with the Huron-Vida origina (HVO)
mixing rule combined with NRTL excess free-energy
model and the new equation of state. The dashed lines
represents  caculated  with o =0.2893 and
7,17, =0.4279/3.8138 Obtained from fitting the experimental
data, and the solid lines denote results calculated with

a=02893 and ¢,/7,-01519/18074 Obtained y—¢
method. Experimental data are from *'.

It is observed in Table 9 that for highly polar and nonideal mixtures, the HVO model shows good

correlative capabilities but Table 10 shows that this is not reliable for extrapolation over a range of a

temperature.

The P-x-y diagrams are presented in Figures 3 and 4 for 2-propanol-water binary systems. In these

figures, the dashed lines are direct correlation of the isothermal VLE data with the HVO mixing rule and the

solid lines are predictions with the model parameters obtained from ¥ —¢ methods at or near room temperature

for the excess Gibbs free-energy model.
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The results are not satisfactory, because a fundamental shortcoming of the Huron-Vidal approach is the
use of the pressure dependent excess Gibbs free-energy in the EOS rather than excess Helmholtz free-energy,
which is much less pressure dependent. This shortcoming was corrected by Wong and Sandler %

In Figures 5 and 6, the results for the 2-propanol - water binary system are presented at 353 K and 523 K using

WS mixing rules, respectively. In these figures the dashed lines are obtained from the direct fit of the model

parameters to the experimental data, whereas the solid lines are prediction with G* model parameters that have

been obtained from the ¥ — ¢ correlation for data at 303 K. The results show that the correlations are excellent,

but more importantly the predictions at temperatures as much as 200 K above the correlation temperature are
almost as accurate as the correlations. Tables 9-12 show the superiority of the new EOS over PRFR * and PRSV
" EOSs for al the binary systems considered in this work which are all highly polar and nonideal, in vapor
pressure calculations. It is expected that including mixing rules for the dipole moment would improve VLE
predictions and that is why a more substantial improvement over PRSV and PRFR in the mixture predictions
(ki=0) is observed when dipole moment is recognized (Tables 7, 9-12). A reasonable mixing rule on dipole
moment should give significant positive deviation in G* when we mix polar and non-polar in a way that PRSV
and PRFR (k;=0) cannot match, similar to Wertheim’s ***° hydrogen-bonding theory. A funny thing happens
with Wertheim’ s theory, however. The overall solution actually becomes more stable even though the difference
in polarity is driving the instability. In Wertheim's theory, significant pure component energy goes into the
hydrogen-bonding, diminishing differences in the disperse interaction energies. The hydrogen-bonding theory
accounts for differences in polarity of the compounds (i.e. hydrogen-bonding), but it gives smaller G* than
would be expected from the differences in disperse energies if hydrogen-bonding was ignored. (cf. the
methanol + cyclohexane system in Ch.15 of Elliott-Lira ®*). The dipole moment treatment should give similar
results.

To demonstrate the differences between the WS and the HV O models, the results of VLE prediction for

the 2-propanol - water binary system at 353 K with the parameters obtained from y — ¢ procedure at 303 K are

shown in Figure 7 in which the solid line is the prediction with the WS mixing rule and the dashed line

14



describes the results of the HVO model. The significant advantage of the WS model over the HYO model in
prediction is clearly visible in thisfigure.

The results of the approximate methods of combining Gibbs free-energy models and equations of state
are presented in Figure 8. Again, two types of calculations were carried out. First, at each temperature the model
parameters were separately fitted to the experimental data (dashed lines) with method 1. Second, predictions
were made at the higher temperatures with the parameters of the excess Gibbs free-energy model (NRTL in this

case) obtained from y — ¢ calculations at 303 K as described by method 2. For this system, al four models

(MHV1, MHV2, LCVM and HVOS) successfully correlate the data along the 353 K isotherm with parameters
optimized in this work. However, the predictive performance of the mixing rules is different. Best results are
obtained with the WS model. The MHV 1 and the MHV models overpredict the saturation pressure, whereas the
HVOS and LCVM models behave very similarly and underpredict the pressure. None of these approximate
models, however, was able to predict the phase behavior as accurately as the WS model (Figure 5) at 353 K. At
523 K (Figure 10), the correlations are less accurate than those achieved at 353 K, and the predictions with all
models are rather poor, especially when compared with the good predictions from the WS model (Figure 6) at
this temperature.

The 2-propanol - water system is considered again using the UNIQUAC model, which is the correlative
model closest to the UNIFAC, to examine the effect of activity coefficient model option. The fitted parameters
for the 2-propanol - water system are given in the Table 14. The VLE correlation at 298 K and the predictions at
523 K are shown in Figures 9 and 10, respectively. In this case al of the mixing rules are able to provide very
accurate correlation of the low-pressure data, as shown in Figure 10. However, when the same parameters are
used to predict VLE behavior of this system at 523 K, the performance of various models differs, as shown in
Figure 10. The WS model once again gives the best prediction, followed by the HVOS and LCVM models, both
of which somewhat underpredict the saturation pressure. The HVO model underpredicts the pressure
significantly, and both the MHV1 and MHV2 models overpredict the pressure, the MHV2 model being more

serioudly in error.
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Fig. 5. VLE correlation (solid lines) of the 2-propanol
and water binary system at 353 K with the Wong-
Sandler (WS) mixing rule combined with the NRTL
excess free-energy model and the new equation of
state. The dashed lines are calculated with
a=02529,7,,/7, =00755/2.6890 and with the Wong-
Sandler mixing rule parameter k, =0.2803 obtained
by fitting the experimental data. The solid lines
represent results calculated with ¢ =02893 and
7,/7,,=0.1613/1.8235 obtained from y—¢
method at 303 K and the Wong-Sandler mixing rule
parameter k, =0.3762 Obtained by matching the
excess Gibbs free-energy from the equation of state
and from the NRTL model at 303 K. Experimental
data are from [47].
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Fig. 6. VLE correlation (solid lines) of the 2-propanol and
water binary system at 523 K with the Wong-Sandler (WS)
mixing rule combined with the NRTL excess free-energy
model and the new equation of state. The dashed lines are

calculated with o =0.2529,7,/7,, = -0.4400/2.7127 and with
the Wong-Sandler mixing rule parameter k, =0.2929
obtained by fitting the experimental data. The solid lines
represent results calculated with ¢=02893 and
7,17, =0.1024/1.241 obtained from ¥ —¢@ method at
303 K and the Wong-Sandler mixing rule parameter
k, =0.3931 oObtained by matching the excess Gibbs free-

energy from the equation of state and from the NRTL model
at 303 K. Experimental data are from [47].
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6. Conclusion:

This work demonstrates that the new equation of state is capable of accurate predictions of
thermodynamic properties of polar and nonpolar fluids. It can reproduce the liquid and vapor phase densities for
pure substances and mixtures with sufficient accuracy. It is also capable of producing good VLE results for

slight nonideal systems.
In this paper, a combination of the new mixing rules with the new EOS and compati bIer" models (NRTL,

UNIQUAC, and UNIQUAC-HB) was used. This general modification improves previous predictions for VLE
behavior and for liquid specific volumes of polar and hydrogen-bonded solutions.

In this research a combination of the new mixing rules and the modification of equation of state which
proposed in this research were used to obtain accurate correlation and prediction of VLE of polar mixtures in
which the simple equations of state are generally not adequate. Excellent agreement between calculated and
experimental data is observed with this method. Also the results obtained from the proposed procedure (using
the new EOS) can more accurately correlate the experimental data of VLE for binary polar solutions in
comparison with PRFR * equation of state. The method of using the new mixing rules with the new EOS also
improved its shortcomings to predict the behavior of highly nonideal polar mixtures. Among the mixing rules
analyzed here, only the HVO, MHV and WS models are mathematically rigorous, and of the three, only the WS
and MHV models have predictive capabilities. All of the approximate methods (MHV1, MHV2, HVOS, and
LCVM) demonstrate good correlative and some predictive capahilities, though they are generally less accurate
than the WS method for extrapolation. On the other hand the capabilities of the new mixing rules are
independent of the type of the EOS and changing the EOS only improves the average absolute deviation for
polar mixtures. This is especialy obvious when extended ranges of temperature are considered. Although the
quality of predictions of the WS and the MHV mixing rules remain about the same over wide temperature
ranges, predictions of the approximate methods not satisfactory. Among the approximate models considered in
this research, not one is superior to the others. The behavior of the MHV1 and MHV2 models are similar, and

the performance of the LCVM and HV OS methods are also comparable in most cases.
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Nomenclature

a, b = Parameters of equations of state

a,-j ) b, i = Correlation factor for parameter @ as defined in egs 7-10.
P = Pressure

PC = Critical pressure

R = Gas constant

19



= Temperature

= Critical temperature

= Reduced temperature
= Specific molar volume

x <=4 44

= Moale fraction of component | in mixture

Greek symbols
a = Correlation factor for parameter A as defined in eq 2
O04,05,04 = Correlation factor for parameter A asdefinedineqgs7, 9
ﬂ = Correlation factor for parameter b as defined in eq4
ﬂl, ,32 ) ﬂ3 = Correlation factor for parameter D as defined in egs 8,10
(4] = Acentric factor

Superscripts
Sat = Saturated state
I = Liquid phase
g = Vapor phase

Subscripts
cal = Calculated
exp = Experimental
Appendix.

The constants of Equations 7-10 are:

a0 = 0.9749 a0 = 0.5465 ago = -0.2294
a1 = 1.3827 a1 =-0.1414 a1 = 0.7435
a = -134.9547 20 = 0.3023 ag2 = 0.0470
b]_o = 0.9646 b20 =0.6783 b30 =-0.8425
b;; =0.1949 by =-2.5175 bs; = 3.0561
by, = -44.9857 b, = 3.2043 bz, =-4.1148
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Tablel1

Deviation of saturated liquid and vapor specific volumes from various equations of state for training compounds (Correlations)

No. Dipole %AA_D_ for liquid %AA!D_ for vapor

Compound Sgl;:ge Dc;ft . Moment Specific Volume NEW Specific Volume NEW

Points (Debye) | PR PRFR JT  PRSV EOS PR PRFR JT PRSV EOS
1- Heptane 36 30 0.00 229 041 166 051 056 |032 053 034 048 0.46
2- 1,3- Butadiene 36 26 0.00 296 114 125 098 09 |106 08 110 0.89 0.89
3- Benzene 36 41 0.00 316 126 302 105 094 |128 168 133 154 1.47
4- Hexane 36 32 0.05 202 047 18 074 087 |070 056 072 054 0.53
5- 2-Methylbutane 36 28 0.12 408 097 246 128 143 | 047 047 047 047 0.47
6- |sobutane 36 25 0.13 457 089 130 080 07 |064 064 064 061 0.59
7- M-Xylene 36 32 0.33 431 243 383 255 261 | 033 034 033 033 0.33
8- 1-Butene 36 35 0.33 340 090 119 061 047 | 058 054 058 055 0.56
9- 1-Octene 36 19 0.34 091 065 169 038 024 |187 205 188 204 2.04
10- Propylbenzene 36 19 0.36 162 148 050 124 112 | 072 054 076 055 0.55
11- Pentane 36 30 0.37 301 046 206 061 068 |077 113 087 0.80 0.63
12- |sopropylbenzene 36 21 0.38 068 115 039 073 052|075 082 078 073 0.69
13- 1-Hexene 36 33 0.40 046 188 091 123 09 |075 060 077 061 0.62
14- Toluene 36 27 0.43 267 121 150 144 155|052 150 070 153 155
15- Isobutene 36 34 0.50 388 041 052 019 008 |074 172 086 225 251
16- Dichlorodifluoromethane 36 35 054 |518 178 231 145 128 |023 023 024 020 0.19
17- Propyne 36 37 0.75 327 100 249 052 028 |08 145 105 1.73 1.87
18- Chloroform 36 23 1.10 628 260 292 304 326 |05 050 055 051 0.51
19- Chlorodiflouromethane 36 38 141 288 165 404 076 032 |056 127 060 117 112
20- 2-Methyl-1-Propanol 36 27 164 314 506 594 19 032|055 048 055 049 0.50
21- 2-Propanol 36 31 1.66 625 327 541 238 193 |063 138 064 132 1.29
22- 2-Methyl-2-Propanol 36 35 1.67 123 627 736 252 064 |065 066 065 067 0.67
23- 1-Propanol 36 29 1.68 465 710 598 29 089 | 069 103 071 1.00 0.98
24- 1,2-Dichloroethane 36 19 175 113 079 029 140 171 |139 178 141 172 1.69
25- Dichloromethane 36 22 1.80 292 804 773 68 625|092 05 090 057 0.57
26- 1-Butanol 36 30 181 296 517 618 274 153 |083 141 084 135 132
27- Cis-1,2-Dichloroethene 36 9 2.00 591 070 09 181 237 | 037 031 344 137 0.40
Total 767 318 219 280 158 127 | 073 093 088 0.9 0.93
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Table2

Deviation of saturated liquid and vapor specific volumes from various equations of state for validation compounds (Predictions)

No. Dipole %AA_D_ for liquid %AA!D_ for vapor

Compound Sglgge D(;a Moment Specific Volume NEW Specific Volume NEW

Points (Debye) PR PRFR Jr PRSV EOS PR PRFR JT PRSV EOS
1- 3-Methylheptane 36 36 0.00 355 059 302 091 107 |101 132 100 130 129
2- Cyclooctane 36 20 0.00 295 015 066 063 087 |075 039 073 043 045
3- 2,2-Dimethylpropane 36 40 0.02 479 214 269 191 180 | 083 08 077 090 091
4- 2-Methylpentane 36 23 0.03 3.37 106 292 116 121 | 060 107 062 102 1.00
5- P-Xylene 36 24 0.10 266 294 248 263 247 | 045 047 045 046 046
6- 1-Pentene 36 32 0.37 273 094 262 075 065 |068 051 066 072 083
7- Chloropentafluoroethane 36 37 0.52 571 482 426 483 483 | 081 127 08 118 114
8- 1,2-dichloro-1,1,2,2- tetrafluoroethane 36 38 0.52 478 317 332 322 324 | 133 165 049 202 2.2
9- O-Xylene 36 33 0.52 261 068 258 077 081 |033 031 033 032 033
10- 3-Methylphenol 36 10 1.65 244 126 260 081 059 | 127 060 125 065 068
11- 1,1,1-Trichloroethane 36 22 191 312 121 1166 062 032 | 034 035 034 034 034
12- Fluoroethane 36 10 1.95 236 701 1727 278 067 | 03 028 122 029 033
13- Methylcyclohexane 36 31 0.00 390 050 466 145 037 | 113 100 053 071 050
14- 2, 3, 4-Trimethyl-pentane 36 33 0.00 370 220 262 114 107 | 143 130 09 152 060
15- Nitrogen Trioxide 48 26 212 223 154 197 069 033 |071 092 095 082 096
16- Formaldehyde 48 23 233 129 031 074 027 013 |065 081 052 056 0.78
17- Water 48 38 1.85 279 124 323 072 047 |052 049 079 051 086
18- Carbon Dioxide 33,48 17 0.00 411 351 375 360 341|023 028 031 040 047
19- Hydrogen Sulfide 48 19 0.97 691 621 652 641 582 | 05 051 063 052 057
20- Methyl Acetate 48 34 1.68 666 582 649 565 536 088 111 116 100 123
21- Carbon Monoxide 48 7 0.11 182 166 18 153 141 (052 082 088 0.73 0.9
22- Ethanol 48 36 1.69 835 623 711 1141 522 | 06 080 092 0.76 099
23- Sulfur Dioxide 48, 49 33 1.63 241 235 236 253 229 {051 062 060 O0.77 0.70
24- Methanol 48 34 170 2056 1223 1853 1752 1012 | 1.2 206 216 132 232
25- Phenol 48 39 1.45 1014 916 965 860 850 | 101 112 106 113 126
26- Acetic Acid 48 31 1.74 2061 2743 2632 3275 2439|188 214 219 198 234
27- Acetone 36, 48 48 288 | 1349 1236 1321 1472 897 | 639 673 652 6.64 6.97
Total 774 580 440 611 48 357 {099 110 107 107 116
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Table 3
Deviation of vapor pressure and enthal py of vaporization from various equations of state for training compounds

(Correlations)
Source No.of  Dipole %AAD for vapor %AAD for_ enthalpy of

Compound of Data Moment pressure NEW vaporization W

Data  Points (Debye) PR PRFR JT PRSV o | PR PRFR JT PRSV ¢
1- Heptane 36 30 0.00 160 061 057 111 102 | 140 071 076 075 075
2- 1,3- Butadiene 36 26 0.00 069 08 065 064 103 | 168 126 155 0.82 046
3- Benzene 36 41 0.00 164 138 127 065 155 | 163 113 105 076 062
4- Hexane 36 32 0.05 112 049 055 094 110 | 168 142 142 121 111
5- 2-Methylbutane 36 28 0.12 033 063 049 038 075 |110 098 099 098 097
6- Isobutane 36 25 0.13 132 101 116 072 074 | 148 146 110 117 120
7- M-Xylene 36 32 0.33 042 08 079 041 076 | 115 155 145 130 122
8- 1-Butene 36 35 0.33 047 058 070 030 075 | 094 08 116 107 103
9- 1-Octene 36 19 0.34 078 211 163 052 233 | 178 208 19 215 225
10- Propylbenzene 36 19 0.36 197 059 046 030 046 | 145 010 023 023 017
11- Pentane 36 30 0.37 077 042 025 051 093 | 108 047 069 039 017
12- Isopropylbenzene 36 21 0.38 313 119 117 146 213 | 236 087 091 114 125
13- 1-Hexene 36 33 0.40 159 142 08 007 222 | 093 018 012 023 0.28
14- Toluene 36 27 0.43 075 062 040 065 097 | 109 097 092 086 069
15- Isobutene 36 34 0.50 072 063 120 057 088 |137 08 109 105 103
16- Dichlorodifluoromethane 36 35 0.54 077 063 049 042 047 | 105 144 077 076 076
17- Propyne 36 37 0.75 090 075 068 063 043 | 172 071 122 075 051
18- Chloroform 36 23 1.10 08 073 052 013 049 |067 070 056 083 061
19- Chlorodiflouromethane 36 38 1.41 061 08 068 020 051 |110 076 060 315 095
20- 2-Methyl-1-Propanol 36 27 1.64 826 746 754 061 301 | 514 489 455 378 245
21- 2-Propanal 36 31 1.66 743 580 58 107 513 | 301 405 218 315 458
22- 2-Methyl-2-Propanol 36 35 1.67 826 746 754 023 301 | 514 489 455 378 245
23- 1-Propanal 36 29 1.68 1963 1564 572 120 464 | 701 655 214 292 461
24- 1,2-Dichloroethane 36 19 1.75 316 511 534 052 566 | 105 3.03 28 200 298
25- Dichloromethane 36 22 1.80 471 412 404 039 279 | 294 263 246 359 177
26- 1-Butanol 36 30 1.81 1229 1011 1027 045 277 | 570 604 493 108 292
27- Cis-1,2-Dichloroethene 36 9 2.00 471 290 251 007 057 |18 065 041 100 142
Total 767 329 277 234 056 174 | 213 190 158 151 145
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Table4

Deviation of vapor pressure and enthalpy of vaporization from various equations of state for validation

compounds (Predictions)

Source N(f). Dipole %AAD for vapor %AAD for_ent_hal py of

Compound of D(;ta Moment pressure NEW vaporization NE

Data Points (Debye) | PR PRFR JT  PRSV EOS PR PRFR JT PRSV E(
1- 3-Methylheptane 36 36 0.00 125 017 020 058 030 | 139 130 099 09% 1
2- Cyclooctane 36 20 0.00 343 278 22r 019 370 |19% 091 106 117 1
3- 2,2-Dimethylpropane 36 40 0.02 043 065 061 037 072 |15 029 121 041 O
4- 2-Methylpentane 36 23 0.03 038 032 022 041 080|125 137 102 073 O
5- P-Xylene 36 24 0.10 049 099 084 027 079 |08 132 127 09% 1
6- 1-Pentene 36 32 0.37 099 068 066 038 084 | 142 098 08 070 O
7- Chloropentafluoroethane 36 37 0.52 070 056 061 043 064 |18 18 162 140 1
8- 1,2-dichloro-1,1,2,2-tetrafl uoroethane 36 38 0.52 198 168 131 112 211|206 104 159 139 1
9- O-Xylene 36 33 0.52 070 071 077 057 060 | 147 172 159 117 1
10- 3-Methylphenol 36 10 1.65 1741 1135 1225 0.67 467 | 624 462 399 214 2.
11- 1,1,1-Trichloroethane 36 22 191 434 290 062 010 176 | 216 040 222 030 O
12- Fuoroethane 36 10 1.95 061 18 158 027 271 |08 28 419 366 A4
13- Methylcyclohexane 36 31 0.00 120 070 136 025 071 |19 213 333 093 O
14- 2, 3, 4-Trimethyl pentane 36 33 0.00 060 010 037 004 037|207 211 201 126 1
15- Nitrogen Trioxide 48 26 212 354 29 313 073 260 | 442 39% 38 244 1
16- Formaldehyde 48 23 2.33 549 432 246 080 387 | 469 447 449 225 1
17- Water 48 38 1.85 357 270 324 025 193|384 339 343 336 3
18- Carbon Dioxide 33,48 17 0.00 083 065 071 08 062 | 161 141 125 121 1
19- Hydrogen Sulfide 48 19 0.97 344 183 18 057 172|363 192 365 344 3.
20- Methyl Acetate 48 34 1.68 358 341 332 122 293|314 305 226 308 2
21- Carbon Monoxide 48 7 0.11 162 151 212 122 169 | 217 212 205 18 1
22- Ethanol 48 36 1.69 240 216 235 181 191 | 445 432 421 412 3.
23- Sulfur Dioxide 48, 49 33 1.63 490 470 337 191 199 | 751 533 426 422 3.
24- Methanol 48 34 1.70 626 189 497 053 166 |68 541 588 471 A4
25- Phenol 48 39 1.45 553 426 441 394 399 | 202 097 09 093 O
26- Acetic Acid 48 31 174 728 241 613 154 189 | 346 339 321 254 2
27- Acetone 33,48 48 2.88 183 137 152 125 177 | 303 290 29% 279 2
Total 774 314 221 234 086 183 |28 243 257 200 1
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Table5

Prediction of liquid specific volumes of alcohols

Source No. of Dipole Rangeof P Range of AAD %

Compound of Data Moment bar TK NEW

Data (Debye) PR PRFR JT EOS

1- Methanol 38 10 1.70 1.01-338.1 298 2112 1176 1256 522

2- Ethanol 38 10 1.73 1.01-338.1 298 1041 2.26 578 0.96

3- 1-Propanol 38 10 1.68 1.01-338.1 298 3.62 816 1114 051

4- 1-Butanol 50 6 1.70 101 298-318 1.09 6.51 826 156

5- 1-Pentanol 40 16 1.64 0.001-0.1 323-375 0.35 7.10 889 1.08

6- 1-Hexanol 40 16 1.65 0.001-0.1 323-375 0.82 6.77 836 1.02

7- 1-Heptanol 40 16 1.70 0.001-0.1 323-375 3.78 3.16 489 298

8- 1-Octanal 40 16 2.00 0.001-0.1 323-375 0.90 6.77 839 031

9- 1-Nonanol 40 16 161 0.001-0.1 323-375 253 453 587 276

Total 116 4.96 6.33 824 182

Table6
Prediction of liquid specific volume of binary mixtures with van der Waals mixing rule and k;; = 0.
Dipole  Dipole
System Data % moment moment Ran-ge P-Range PR JT PRFR '\élé\g
Source data 1 2 bar AAD AAD AAD AAD
(Debye) (Debye)

1- Benzene(1) + Octane(2) 40 11 0.00 0.00 298.15 101 168 171 113 1.00
2- Ethyl benzene(1) + Octane(2) 40 11 0.40 0.00 298.15 101 189 148 129 085
3- M-xylene(1) + Octane(2) 40 11 0.33 0.00 298.15 101 176 148 143 099
4- P-xylene(1) + Hexane(2) 40 11 0.32 0.05 298.15 101 195 194 173 122
5- P-xylene(1) + Heptane(2) 40 10 0.32 0.00 298.15 101 197 170 174 112
6- Ethyl benzene(1) + 2-Propanone(2) 41 15 0.40 286  298.15 101 887 905 976 19
7- Hexane(1) + 1-Propanol (2) 38 20 0.05 168 29815 101-3381 286 208 113 207
8- Hexane(1) + Ethanol(2) 38 20 0.05 173 29815 101-3381 477 198 203 227
9- 2-Butanone(1) + Dibutyl ether(2) 42 11 2.76 117  303.15 101 845 6.16 6.66 4.08
10- 2-Picoling(1) + Dibutyl ether(2) 42 11 1.97 117  303.15 101 11.09 826 877 894
11- Isopropyl acetate(1) + Cyclohexane(2) 50 13 175 0.00  298.15 101 428 263 211 267
12- 1,2- Ethandiol (1) + 2-Methoxyethanol (2) 50 11 2.30 204  353.00 101 730 932 691 403
Total 155 474 398 372 260
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