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Introduction 
 

Colloid-polymer mixtures serve as model systems to study complex fluids. The challenge in this 
study lies in the fact that these are systems where the relevant physical processes often occur over a wide 
range of characteristic length and time scales which can be strongly correlated. The addition of soluble 
non-adsorbing polymer to colloidal dispersions, even in small amounts, has a significant effect on 
transport properties (mainly because it induces a new type of interaction between colloidal particles, the 
depletion interaction). 

When non-adsorbing polymers are added to a suspension of hard-sphere-like colloidal particles, 
an effective, generally attractive interaction is induced between the colloidal particles. The origin of this 
interaction is the depletion effect: the exclusion of polymer from the depletion zone between the colloids 
give rise to an unbalanced osmotic pressure. Alternatively, one can view the depletion induced attraction 
as arising from an increase in the entropy of the polymers. 

When colloid-polymer systems are confined by surfaces, boundary and wall effects become 
important. Diffusion in quasi one-dimensional geometries is of particular interest not only because of 
practical applications for diffusion processes in microporous solids1,2 and in biological channels3-5 but 
also because of the emergence of a new regime (anomalous diffusion) in the long-time dynamics of 
colloids. 
 

Description of the model 
 

Consider a mixture of colloids and polymers in a solvent confined in a cylindrical channel. In the 
Asakura-Oosawa model, colloid-colloid and colloid-polymer interactions are just hard-core repulsions 
whereas polymers are considered as ideal interpenetrating coils. Furthermore, colloids cannot pass each 
other if the channel is narrow enough (single-file diffusion), and their motion will effectively be 
restricted to translations along the central axis of the channel. On the other hand, depending on its size 
and the ability to pass the colloids, a polymer can be regarded as a one-dimensional rod of length 2Rg or 
as a three-dimensional sphere of radius Rg . In both cases, the binary mixture can be reduced (at least 
from thermodynamics point of view) to an effective one-component system with a modified 
Hamiltonian, by integrating out the polymer degrees of freedom and neglecting three- and higher-body 
potentials. This reduction is exact for polymer to colloid size ratios which are less than one (q=σp/σc<1).  

In order to calculate the diffusion coefficients, it is necessary to specify the microscopic 
diffusivity tensor Dij. Screening of hydrodynamic interactions in quasi-one-dimension allows us to 
restrict ourselves to the pair-wise part of the hydrodynamic interactions. At this level, expressions have 
recently been developed6,7 for the elements of the diffusivity tensor that take the finite size of the 
Brownian particles into account. In the present treatment, the hydrodynamic coupling between the 
motions of polymers and colloids will be neglected. Therefore, apart from the direct interactions, 
polymers affect the motion of colloids by changing the viscosity of the solvent. In other words, they 
provide an effective medium for the colloids.  

 



. 
Short-time diffusion 

For time intervals shorter than the time between particle collisions, the mean-squared 
displacement of colloids in a randomizing background fluid is proportional to time. The proportionality 
constant identifies the short-time self-diffusion coefficient Ds

s.  
Ds

s is then obtained by averaging of D11 in the canonical ensemble, which requires the 
knowledge of the colloid-colloid pair distribution function g(x)                  

  
In the above expression, η is the packing fraction of colloids, β is ratio of colloid to channel 

radius, and χw and χp represent the hydrodynamic effect of the walls and of the other colloids, 
respectively. The assembly of colloidal particles, within our model, is equivalent to a one-dimensional 
fluid of hard spheres (rods) with nearest-neighbor interactions. For these types of systems, there is a 
systematic method to find g(x)8. However, exact analytic closed-form expressions, even for linear 
potentials, are only feasible for short separations9. An alternate way of getting “exact” results for g(x) is 
via Monte Carlo simulations. 
 
Long-time diffusion 

Excluding the mutual passage of colloids forces them into a single file with a fixed spatial 
sequence, and severely restricts the probability for large particle displacements, thereby drastically 
reduces the diffusion rate at long times. The mean-squared displacement is no longer proportional to 
time but to the square root of time. Strictly speaking, the diffusion coefficient is zero. Nevertheless one 
can define the mobility factor, F, as the rate of transport through the following relation 

 
It has been shown that for particles with short-range interaction, the mobility factor depends on the 
short-time collective dynamics of the system, and in the hydrodynamic limit it is given by 

 
S(q) and Dc

s(q) are the static structure factor and short-time collective diffusion coefficients of colloids 
at wavenumber q, respectively, and ρ is the colloid number density. Within the framework of 
Smoluchowski dynamics, the short-time wavenumber-dependent collective diffusion coefficient can be 
written as 

  
where H(q) is the hydrodynamic function. 
 

Results and discussion 
 

For channels with a diameter of a few microns and with polymers that can pass the colloids the 
three-dimensional model of a polymer is an appropriate model. Adopting this model, the pair 
distribution function of colloids can be obtained from Monte Carlo simulations. Fig.1 shows g(r) for two 
selected values of ηc. Comparing with the pair distribution function of pure colloids reveals that the 
depletion interaction leads to a higher value of g(σc), as expected. 
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Fig.1: Radial distribution function of colloids in a colloid-polymer mixture for               

  
 

The reduction of the self-diffusion coefficient upon addition of polymers to the solution is 
depicted in Fig.2. It is customary to write the diffusion coefficient in terms of a virial expansion in 
density or volume fraction. The second virial coefficient is negative in our case, in contrast to the case of 
diffusion of colloids in bulk solutions. 
 

 
Fig.2: Short-time self-diffusion coefficient of colloids in solution with and without polymer 

 
 

Next, the short-time collective diffusion coefficient and long-time mobility factor of colloids in a 
colloid-polymer mixture are determined. Fig.3 exhibits an interesting feature of Dc

s, namely its growth 
with concentration. It also shows that the addition of polymer reduces the cooperative diffusion of 
colloids, in accord with intuition. 
 



 
Fig.3: Short-time (macroscopic) collective diffusion coefficient of colloids in solution with and without 

polymer. The case where hydrodynamic interactions (HI) are absent is also plotted for reference. 
 

 
In contrast to the collective diffusion coefficient, the long-time mobility factor is enhanced in 

systems with short-range attractive interactions in one dimension compared to systems where hard-core 
repulsive forced are the only source of direct interactions (Fig.4).  
 

 
Fig.4: Long-time mobility factor of colloids in solutions with and without polymer. 
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