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University of California Santa Barbara, Santa Barbara, CA 

 
 

Introduction 
 
 Emulsion polymerization has significant advantages over bulk and solution 
polymerization processes. These advantages result mostly from the multiphase and 
compartmentalized nature of the emulsion polymerization, delivering a high versatility to 
product qualities but adding to the complexity of the process. The control of the full particle-
size distribution (PSD) in emulsion polymerization is vital for industrial applications where the 
target distributions are usually complex and/or multimodal. In these cases, end-use 
properties (mechanical, rheological, optical) of the polymer products depend strongly on the 
endpoint PSD [1] - [3]. The evolution of the PSD is governed by the interplay of three major 
phenomena, which are nucleation, growth and coagulation of the polymer particles. The 
interaction among these phenomena and the complexity of their relation to process variables 
(flowrates of the monomers, surfactant, and initiator) creates a challenging control problem. 
Another difficulty is that PSD measurements have significant measurement delays compared 
to the inherent time scale of the system. 
 
 Although the control of the emulsion polymerization systems is a well studied topic, 
see for example [4] - [6], typically involving the regulation of one or more of the lumped 
properties (e.g. moments of the distributions), the control of the distribution shape is largely 
an open problem. The indirect control of PSD through moments reduces the high 
dimensionality of the problem and results with suitable low-order systems for closed-loop 
control and dynamic optimization.  However, for the cases where the desired distribution is 
complex, regulation of moments does not ensure the regulation to the target. Dynamic 
optimization has been applied extensively for obtaining an optimal batch recipe for emulsion 
polymerization as well as other PBE systems. Although the perfect execution of the nominal 
batch procedures would end with the desired distributions this is not always the case as the 
operation of emulsion polymerization systems are susceptible to various disturbances. Since 
the process is complex due to the interaction between growth, nucleation, and coagulation, 
most of the disturbances end up affecting the whole PSD. For example, any uncertainty in 
the rate of mechanical agitation, reactor temperature, and ingredient feed-rates would affect 
coagulation as well as the growth and the nucleation of the particles. In-batch feedback 
control of the distributions is needed for rejection of these disturbances ensuring consistent 
end-point PSDs for each batch. 
 
 In this work, an in-batch feedback control algorithm that controls the full PSD is 
presented. The algorithm uses a master controller to update the reference trajectories for the 
growth and nucleation kernels. The slave controller is designed to manipulate the feedrates 
of the monomers, surfactant, reducer, and oxidizer to keep the system following these 
updated trajectories. The cascade architecture enables the controller to exploit the relation 
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between the kernels better than a controller that would use the feedrates to the system as 
the manipulated variables. The algorithm is tested on a semibatch VAc/BuA emulsion 
copolymerization system where the evolution of the PSD is governed by a first order 
population balance equation (PBE). In the next section, the semibatch emulsion  
copolymerization system under study is presented. The following section outlines the 
controller algorithm. The paper is concluded with the results and discussion.  
 
 

Semibatch VAc/BuA Emulsion Copolymerization System 
 
 In this study, a population balance equation (PBE) model, developed by Immanuel et 
al. [7] describing the evolution of the particle size distribution in a semibatch VAc/BuA 
copolymerization reactor is used as the plant. The model that is summarized in Table 1 
consists of a PBE coupled with necessary mass balances. The model considers size 
dependent growth, partitioning of the nonionic surfactants, and the average number of 
radicals per particle calculations via first principles. A computationally efficient numerical 
method that exploits the different inherent time scales present in emulsion polymerization is 
used to solve the particle PBE, where the PSD is discretized into 250 finite elements of 2 nm 
width [8]. 
 

Table 1. PBE model for a semibatch emulsion copolymerization reactor 

 
 
The actual experimental system under consideration is presented in Fig. 1. The system 
consists of a 3L glass reactor, where the monomers, oxidizer, reducer, and the surfactant are 
delivered by remote setpoint metering pumps controlled by a digital control system. The PSD 
measurements can be obtained every 12 minutes by a capillary hydrodynamic fractionator 
(CHDF) with a measurement delay of 12 minutes and the density measurements are 
available every 1 minute from the on-line densitometer without delay. The semibatch system 
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runs under semibatch conditions and this allows for a monomer-starved operation, where 
there is no separate monomer phase is present. The initial conditions for the system and the 
manipulated variables of the slave controller with their base values are represented in Table 
2.  
 

 
Figure 1. Schematic diagram of the simulated VAc/BuA emulsion copolymerization system. 

 
 

Table 2. Semibatch VAc/BuA emulsion copolymerization system conditions 
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Cascade Control of Nucleation and Growth 
 
 
 The master controller for the regulation of the PSD uses the principal components of 
the PSD as the outputs and manipulates growth and nucleation variables. The growth 
variable that affects the growth kernel of the PBE is described as: 
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where the vectors M
w
, kp, p, and Cp are the molecular weights, propagation constants, 
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where jcr, e
l
, pw, Vaq, C

l
w, Cmic, k

w
Pav are the critical chain length for homogeneous 

nucleation, entry constant of oligo-radicals of length l into particles, aqueous pseudo-

homopolymer probabilities, auqueous phase volume, aqueous concentration of oligomers of 

length l, concentration of micelles in the system, and average propagation kinetic constant 

for the water phase, respectively. These two variables act as the outputs for the slave 
controller of the cascade controller structure, as can be seen in Fig. 2. The slave controller 
uses the feedrates of monomers, surfactant, reducer, and the oxidizer to keep the nucleation 
and growth variables at their respective reference trajectories throughout the batch. 

 

 

Figure 2. Proposed cascade algorithm for the regulation of PSD. 
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 The primary controller is a nonlinear model predictive controller that uses the PBE 
model described in the previous section for the open-loop nonlinear predictions and the 
linearized version of the same model for predicting the effect of the manipulated variables on 
the system. As the effects of the inputs are incorporated linearly, the optimization problem for 
deciding on the future values of the inputs is a quadratic objective function that can be solved 
readily. The PBE model can be represented as a system of continuous-time nonlinear 
differential equations: 
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where x represents the system states and u represents manipulated variables. The discrete 

version of the model can be expressed as: 
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First, model prediction is performed by integrating the nonlinear model one time step with the 

information at time step k-1 and then the state vector is corrected with the current 

measurement vector using the optimal Kalman gain assuming, d and  are white noises with 

covariances Qd and R: 
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where the Kalman gain is computed using the linearized plant at time k-1. This linear system 

can be represented as: 
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The Kalman gain, Kf,k, and the state covariance, Pk, are updated as: 
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for which the initial covariance of the state vector, P0, is defined appropriately. The multistep-

ahead MPC prediction equation is formulated such that the contribution of the future 
unknown input changes on the controlled outputs is linear. The prediction equation can be 
expressed as: 
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The computation of the optimal control input is established by formulating and solving a 
quadratic program that can be solved by a suitable quadratic programming (QP) solver: 
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In a similar but more direct approach, the linearization of the nonlinear plant model is avoided 
and a nonlinear constrained optimization problem is formulated to obtain the future 
manipulated variable changes. The nonlinear optimization problem is formulated as: 
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It must be noted that the nonlinear plant model is used for the closed-loop prediction of the 
controlled outputs in Eq. 11. This is different from Eq. 9, where the nonlinear plant model is 
only used for the open-loop prediction of the outputs. Also, a nonlinear programming (NLP) 
solver should be used for the optimization problem described in Eq. 11. 
 
The discrete system matrices at time, k , are obtained by linearization around a nominal point 
and application of a zero order hold. As this linearization yields a high order model (258 
states, 250 outputs) that is ill-conditioned, model order reduction is accomplished using 

principal component analysis (PCA). The reduced states, x, and the reduced outputs, y
c
, are 

obtained from the normalized original states, xɶ , and normalized original outputs 
c

yɶ  by the 

orthonormal linear transformation matrices, 
x

k
P  and 

y

k
P : 
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with this transformation, the reduced order system matrices are: 
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where k
Aɶ , 

u

kBɶ , and k
Cɶ  are the full order state matrices at time k. The distributed states ( xɶ  

that represents F), discretized population density function in Table 1, and the outputs, (
c

yɶ  

that represents wPSD) have different PCA models for each time point throughout the batch. 
The training data for the PCA models consists of 60 batches and the model construction 
from this multiway data is presented in Fig. 3. 
 
 

 
Figure 3. Unfolding of the multiway data applied in this work. At each discrete time point 

(every 1 minute)  a PCA models for the population density and wPSD are constructed using 
a training database of 60 batches. 

 
 

Results and Discussion 
 
 The proposed controller with the objective function defined in Eq. 10 was tested 
against a disturbance in the initial VAc amount inside the reactor, where the initial VAc inside 
the reactor was 100% higher than its nominal amount. The PSD measurements are obtained 
by the master controller every 12 minutes with 12 minutes of delay. With the information of 
PSD the master controller computes the change of growth and nucleation variables that are 
imposed on their nominal trajectories. The perfect slave controller considered for this case 
ensures that growth and nucleation follows their updated trajectories. The resulting wPSDs 
for the controlled, uncontrolled, and the nominal cases are presented in Fig. 4. The 
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uncontrolled distribution has a lower secondary peak due to lower micellar nucleation events 
and a shifted primary peak due to slow growth of the larger particles caused by the higher 
VAc inside the system. The controlled distribution shows that the controller was able to 
regulate both peaks as both the amplitudes and positions are moved towards the target 
distribution. The controlled distribution was 98% closer to the target distribution compared to 
the uncontrolled distribution (computed as, 

( )|| || || || / || ||uncontr nom contr nom uncontr nomwPSD wPSD wPSD wPSD wPSD wPSD− − − − ). 
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Figure 4. Controlled, target, and uncontrolled wPSDs in the case of a 100% higher initial VAc 

holdup in the reactor. 
 

The nominal and the updated trajectories of the nucleation and growth variables are 
presented in Fig. 5. The nucleation is increased as the disturbance on the system 
suppresses the micellar nucleation events and would result with a smaller secondary peak if 
not regulated. The growth is also increased that helps regulate the primary peak of the wPSD 
to its target. It must be noted that no corrective action is employed by the controller until the 
first wPSD measurement is available.  
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Figure 5. Closed loop and the nominal trajectories of the manipulated variables for the 100% 

higher initial VAc disturbance. 
 
The controller with the objective function defined in Eq. 11 was tested against a disturbance, 
where the growth rate was lowered by 80% of its nominal value for the first 14 minutes of the 
batch. As in the previous disturbance scenario a perfect slave controller was considered for 
the system after the 14

th
 minute of the batch. Also, in this case the states of the were 

assumed to be measured by the controller. The sequential quadratic programming (SQP) 
solver of MATLAB, fmincon, was used as the NLP solver. Controlled, uncontrolled, and the 
nominal wPSDs for this disturbance case are presented in Fig. 6. The uncontrolled 
distribution is largely affected by the disturbance as evident by the disturbed primary and 
secondary peaks. However, the controller adjusts the nucleation and growth, as seen in Fig. 
7, accordingly to reject the disturbance and the controlled distribution is moved to the target. 
It can be seen that the controller increases the growth to compensate for the reduced growth 
and nucleation is lowered immediately to correct for the increased secondary peak amplitude 
as soon as the first measurement is available. In this case, the controlled distribution was 
78% closer to the target distribution compared to the uncontrolled distribution. 
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Figure 6. Controlled, target, and uncontrolled wPSDs in the case of a 80% lowered growth 

rate with respect to the nominal case for the first 14 minutes of the batch. 
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Figure 7. Closed loop and the nominal trajectories of the manipulated variables for the 

disturbance of a 80% lowered growth rate for the first 14 minutes of the batch. 
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Summary 
 
 A cascade approach, where the nucleation and growth events are manipulated by a 
master controller is developed for the regulation of the full PSD in a semibatch emulsion 
copolymerization system. In this approach a slave controller is manipulating the feedrates to 
the system in order to attain the updated trajectories of growth and nucleation by a master 
controller. The master controller uses PCA based model order reduction for the high 
dimensional distributed outputs and states of the system. The controller’s performance was 
tested against a large disturbance of 100% higher initial VAc amount and another 
disturbance of 80% lowered growth for the first 14 minutes and was found to be satisfactory. 
Although the model system used in this work was governed by a first order PBE, presented 
methods are applicable to other PBE systems where the nucleation and growth are the 
dominant mechanisms determining the shape of the PSD.  
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