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ABSTRACT

We have investigated the validity of the application of the dissipative particle dynamics
(DPD) method to ferromagnetic colloidal dispersions by conducting DPD simulations for a
two-dimensional system.  Firstly, the interaction between dissipative and magnetic particles
has been idealized as some model potentials, and DPD simulations have been carried out
using such model potentials for a two magnetic particle system.  In these simulations, we
have concentrated our attention on the collision time for the two particles approaching each
other and touching from an initially separated position, and such collision time has been
evaluated for various cases of the mass and diameter of dissipative particles and the model
parameters, which are included in defining the equation of motion of dissipative particles.
Next, we have treated a multi-particle system of magnetic particles, and have evaluated
particle aggregates and the pair correlation function along an applied magnetic field
direction.  Such characteristics of aggregate structures have been compared with the
results of Monte Carlo and Brownian dynamics simulations in order to clarify the validity of
the application of the DPD method to particle dispersion systems.  The present simulation
results have clearly shown that DPD simulations with the model interaction potential
presented here give rise to physically reasonable aggregate structures under circumstances
of strong magnetic particle-particle interactions as well as a strong external magnetic field,
since these aggregate structures are in good agreement with those of Monte Carlo and
Brownian dynamics simulations.

1. INTRODUCTION

Computer simulation methods for solving fluid problems are mainly classified into two
simulation techniques.  The first one is numerical analysis methods, in which the basic
equations such as the Navier-Stokes equations are descretized and such equations are
numerically solved to obtain the solution of the flow field.  The second one is molecular
dynamics methods, in which molecules or fluid particles, that are constituents of fluids, are
simulated and the solution of the flow field is obtained from the averaging procedure of
microscopic velocities of molecules or fluid particles.  Representative methods for the latter
are lattice gas methods [1], lattice Boltzmann methods [2], dissipative particle dynamics



(DPD) methods [3-8].  In the former two methods,  the fluid region is divided in a lattice
formation and virtual fluid particles are allowed to move on such lattice cites.  In contrast,
there is not such a limitation concerning the motion of virtual particles for DPD methods.
In DPD methods, clusters or groups of molecules are dealt with, and these virtual or fluid
particles are simulated to obtain a flow field.  In this approach, a system is regarded as
being composed of such model fluid particles, and these particles interact with each other
dissipatively, exchange momenta, and move randomly like Brownian particles; we call this
virtual fluid particle a "dissipative particle."  DPD methods are, therefore, a mesoscopic
simulation technique, and we discuss the availability of DPD methods for a simulation
technique of colloidal dispersions in the present study.
 

In molecular dynamics methods [9-11], the motion of each molecule, which constitutes
a fluid, are simulated to obtain the solution of a macroscopic flow field, so that such
simulations are computationally very expensive.  Molecular dynamics methods, therefore,
cannot be applicable to various flow problems in a wide range, but to some limited flow
problems alone.  In contrast, since virtual fluid particles are treated in a simulation for DPD
methods, the commutation time of DPD simulations can be shortened significantly
compared with molecular dynamics simulations.  This clearly means that DPD methods are
applicable to not only pure liquid flow problems but also flow problems of suspensions
composed of solid particles, in which multi-body hydrodynamic interactions among particles
have significant influences on flow properties.  Since multi-body hydrodynamic interactions
are very difficult to be treated in simulations of a particle-liquid system, conventional
simulations usually take into consideration only the friction forces between particles and the
ambient fluid, instead of taking account of such multi-body interactions [12].   This tendency
concerning the study by means of simulations becomes more significant for complicated
suspensions or dispersions in which non-spherical particles such as rodlike ones are
dispersed in a base liquid [13,14].  

Some simulation techniques may be possible for solving the particle motion and the
flow field simultaneously; the methods based on the Navier-Stokes equations [15-17],
lattice-Boltzmann methods [18], and DPD methods [3,4,19] are representative ones.  If we
consider applying such simulation techniques to colloidal dispersions composed of
ferromagnetic rodlike particles, of which our research group has vigorously been conducting
some systematic studies [20-25], DPD methods may be regarded as the most promising
simulation technique.  Hence, we focus our attention on DPD methods in the present
study.

The objectives of the present study are firstly to present the potential model for the
interactions between dissipative and magnetic particles, and to discuss the validity of such
model potentials by considering the dynamic properties for a two magnetic particle system.
In concrete, the influences of model parameters [3,5,8], which are introduced in developing
the equation of motion for dissipative particles, the number density , diameter, and mass
of dissipative particles, on such characteristics are discussed in detail.  Secondly, we
consider aggregation phenomena in a many-particle system to clarify the validity of DPD
methods for ferromagnetic colloidal dispersions.  In concrete, the results of aggregate
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structures obtained by DPD simulations are compared with those of Monte Carlo and
Brownian dynamics simulations under circumstances of a strong external magnetic field.

     
2. DISSIPATIVE PARTICLE DYNAMICS METHODS 

2.1. Kinetic equation of dissipative particles 

A ferromagnetic colloidal dispersion is microscopically composed of ferromagnetic
particles and molecules of a base liquid.  If a base liquid is regarded as being composed
of dissipative particles, the motion of magnetic particles is governed by the interactions with
the other magnetic particles and ambient dissipative ones.  In the following, we briefly show
the kinetic equation of dissipative particles [3, 5, 8, 11].  

The following three kinds of forces act on dissipative particle i: a repulsive
conservative force Fij

C exerted by the other particles, a dissipative force  Fij
D providing a

viscous drag to the system, and a random or stochastic force Fij
R inducing the thermal

motion of particles. The magnetic force acting on dissipative particles by magnetic ones is
not taken into account in this section, since this force will be addressed in the following
section.  With the above-mentioned forces, the equation of motion of particle i can be
written as [11]

in which 

Also, md is the mass of particle i, vi is the velocity, and, concerning the subscripts, for
example, Fij

C is the force acting on particle i by particle j.  Also, α, γ, and σ are the constants
representing the strengths of repulsive, dissipative, and random forces, respectively.  The
weight functions wD(rij) and wR(rij) are introduced such that inter-particle forces decrease
with increasing particle-particle separations, and the expression for  wR(rij) is written as 

The weight functions wD(r i j) and wR(r i j), and γ and σ have to satisfy the following
relationships, respectively:

In the above equations, dc  is the apparent diameter of dissipative particles, rij  is the relative
position  (rij=| rij|), given by rij =ri-rj, eij is the unit vector denoting the direction of particle  i
relative to particle j, expressed as eij=rij/rij, vij is the relative velocity, expressed as vij =vi-vj,
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k is Boltzmann's constant, and T is the liquid temperature.  Also, ζij is a random variable
inducing the random motion of particles.
  

If Eq. (1) is integrated with respect to time over a small time interval from  t to t+Δt, then
the finite difference equations governing the particle motion in simulations can be obtained
as

in which θ i j   is the stochastic variable and has to satisfy the following stochastic
properties:

in which δij  is the Kronecker delta.  In simulations, the stochastic variable θij  is sampled
from a uniform or normal distribution with zero average value and unit variance [3-5].

2.2. Kinetic equation of magnetic particles  

A magnetic particle is idealized as a spherical particle with a central point dipole
coated with a uniform surfactant layer (or a steric layer).  If the diameter of the solid part of
such particles, the thickness of the steric layer, and the diameter including the steric layer,
are denoted by ds , δ, and d (= ds +2δ ), respectively, then the magnetic interaction energy
between particles i and j, uij

(m), and the particle-field interaction energy, ui
(H), and the

interaction energy arising due to the overlapping of the steric layers, uij
(V),  are expressed,

respectively, as [11]

in which µ0 is the permeability of free space,  mi is the magnetic moment (m0=｜mi｜), tij is
the unit vector given by rij/rij, rij=ri-rj, rij=rij , H is the applied magnetic field (H=H ), and
tδ is the ratio of the thickness of steric layer δ to the radius of the solid part of the particle,
equal to 2δ/ds.  The nondimensional parameter λV, appearing in Eq. (10), represents the
strength of steric particle-particle interactions relative to the thermal energy, expressed as

, in which ns is the number of surfactant molecules per unit area on the particleλVπd 2
s ns /2

surface. 
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From Eqs. (8) and (10), the forces acting on particle i are written as 

Besides these forces, the forces by dissipative particles have to be taken into account, but
are not treated here, since they will be addressed in the following section.

The motion of magnetic particles are specified by Newton’s equations, so that such
equations are descretized concerning time to obtain the finite difference equations
governing the particle motion in simulations:  

in which mm is the mass of magnetic particles and Fij = Fij
(m) + Fij

(V). 

2.3. Model potential for interactions between dissipative and magnetic particles

In the previous example of the application of DPD methods to colloidal dispersions [3,
4, 19], each colloidal particle is modeled as a group of dissipative particles.  In this case,
the interactions of the magnetic particle of interest with the ambient dissipative particles are
treated as the interactions between ambient dissipative particles and the constituent
dissipative ones of the magnetic particle.  However, the interactions between colloidal
particles and solvent molecules in a real dispersion ought to depend on the characteristics
of the dispersion of interest.  In other words, such interactions are strongly dependent on
the mass and diameter ratios of colloidal particles to solvent molecules, the properties of
the interaction potential between such particles, etc.  If we take into account that dissipative
particles themselves are just a virtual particle which is a cluster or group of solvent
molecules, it may be possible to use a model potential for the interaction between
dissipative and magnetic particles, instead of regarding a colloidal particle as a group of
dissipative particles.

The most simple potential model may be the hard sphere potential, in which magnetic
particles are regarded as a hard sphere and dissipative particles are elastically reflected
at the contact with a magnetic particle.  Another simple potential model may be the
Lennard-Jones potential.  Although the present study adopts the latter model potential and
attempts to discuss its validity, the simple form of the Lennard-Jones potential based on
each center of dissipative and magnetic particles causes an extraordinary overlap between
such particles.  Hence, as shown in Fig. 1, we consider a inscribed sphere with the same
diameter of dissipative particles, which is located on the line connected between each
center of dissipative and magnetic particles, and apply the Lennard-Jones potential to such
an inscribed particle and dissipative particles.  That is, the interaction energy  uip for
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                             FIG.1.  Model of interaction between magnetic and dissipative particles.

dissipative particle p and magnetic particle i is expressed as 

in which  is the constant representing the strength of such an interaction, rip=ri - rp ，

rip=rip, ri is the position vector of the center of magnetic particle,   rp is the similar position
vector of dissipative particle p, and ri is that of the above-mentioned inscribed sphere.  The
expression for ri is written as

in which ，rip=ri - rp ，and rip=rip．  If we set m=12 and n=6 in Eq. (15),  the modelr̂ ipr ip /rip
potential leads to the famous Lennard-Jones 12-6 potential.  In the present study, we
discuss several cases of the model potentials with  (m, n)=(12,6), (8,4), etc. 

From the expression of the interaction energy in Eq. (15), the force acting on
dissipative particle p by magnetic particle i,  Fip 

(int), is expressed as 

2.4. Non-dimensionalization of the equation of motion and related quantities 

To non-dimensionalize each quantity, the following representative values are used:
d for distances, mm for masses, kT for energies, (kT /mm)½ for velocities, d (mm /kT)½ for time,
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kT/d for forces, etc.  With these representative values, Eqs. (5) and (6) can be non-
dimensionalized as

in which

In the above equations, the superscript * means non-dimensionalized quantities.  It is noted
that Eq. (19) includes the forces due to the interactions with magnetic particles, described
in Sec. 2.3.  

Similarly, the non-dimensional form of Eqs. (13), (14), (11), and (12) are expressed
as

in which Fij *= Fij
(m)*+Fij

(V)*, ni is the unit vector denoting the direction of the magnetic moment
mi, expressed as ni=mi /m0 (m0=｜mi｜).  The non-dimensional parameter λ in Eq. (24)
means the strength of magnetic particle interactions relative to the thermal energy,
expressed as .  A slightly different parameter λs =(d/ds)3λ ( ),λµ0m

2
0 / 4πd 3kT µ0m

2
0 / 4πd 3

s
which is defined based on the diameter of the solid part, may be useful in order to compare
the present results with the previous ones obtained by Monte Carlo and Brownian dynamics
simulations. 

The expression of the force between dissipative and magnetic particles is written in
a non-dimensional form as 
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in which λ is the non-dimensional parameter representing the strength of the interaction,
expressed as λ=4n/(kTdc

*).

In the present study, we consider a two-dimensional system in thermodynamic
equilibrium, so that the relationship between the system temperature and the mean kinetic
energy of one dissipative particle is expressed from the equi-partition law of energies as

From this equation, the mean square velocity of dissipative particles,  , is written as v 2
d

Similarly,  the mean square velocity of magnetic particles,  , is expressed as v 2
m

The number density of dissipative particles is non-dimensionalized as 

Instead of nd
*, the non-dimensional density  based on the diameter of dissipative particlesn̂d

may be useful for grasping the packing situation of dissipative particle directly.  The non-
dimensional number density of magnetic particles is expressed as  .n 

mnmd 2

3. PARAMETERS FOR SIMULATIONS 

In the present study, we consider a two-dimensional dispersion composed of
ferromagnetic particles to investigate the validity of the application of the DPD method to
such a system.  The equation of motion of dissipative particles includes many indefinite
factors such as the particle diameter, mass,  and various model parameters,  so that we
concentrate our attention on a simplified case that an external magnetic field is strong
enough to neglect the rotational motion of magnetic particles; in this situation, each
magnetic moment always points to the magnetic field direction.   Firstly, we treat a two
magnetic particle system to discuss the collision time for the two particles approaching each
other and touching from an initially separated position.  Such collision time is evaluated for
several cases of the above-mentioned model potentials and for various cases of the mass
and diameter of dissipative particles and the model parameters.  Next, we treat a
multi-particle system composed of eighty-one magnetic particles to evaluate particle



aggregates and the pair correlation function along the applied magnetic field direction.
These results are compared with those obtained by Brownian dynamics and Monte Carlo
simulations in order to clarify the validity of the application of the DPD method to particle
dispersion systems. 

For a two-particle system, simulations have been conducted for four cases of the
model potential in Eq. (15) such as  (m,n)=(12,6), (8,4), (4,2), and (2,1).  For the case of
simulations for multi-particle systems, we have concentrated our attention on one specific
model potential of (m,n)=(12,6).  Representative parameters used for the present simulations
are γ*=10, α*=γ*/10, md

*=0.01, dc
*=0.4, λ=10, =1, and Δt*= 0.0001.  Equation (19) shows thatn̂d

the distance of the movement of dissipative particles per unit time step becomes longer
with decreased values of  md

* and dc
*.  Thus, the time interval Δt* has been adjusted in

proportion to the product of  md
* and dc

*.  That is, a smaller value of the time interval has
been used for a decreased value of  md

*dc
*.  The total number of simulation steps, Ntimemx,

was sufficient when the condition of  Δt*Ntimemx=100 was satisfied.

4. RESULTS AND DISCUSSION

4.1. Influence of model potentials and model parameters on dynamic properties of magnetic
particles for a two magnetic particle system 

We have evaluated the contact time tcont for two magnetic particles touching each other
from an initially separated position; the magnetic particles are initially located along the
magnetic field direction with the separation of 1.8d in the square summation region with the
side length 4d. The results of tcont, which will be shown later, were obtained by averaging the
data, which were evaluated for ten different cases of uniform random number sequences;
random numbers are necessary for generating the random motion of dissipative particles.
Unless specifically noted, the results were obtained for the representative case of =1,n̂d
λs=20, λ=10, γ*=10, α*=γ*/10, md

*=0.01,and  dc
*=0.4.

    Figure 2 shows the influence of λ on the non-dimensional contact time tcont
* for four

cases of the model potential in Eq. (15), i.e., for (m,n)=(12,6), (8,4), (4,2), and (2,1).  It is seen
that, since magnetic particles do the Brownian motion due to the interactions with the
ambient dissipative particles, the qualitative features are difficult to be grasped clearly,
especially for (m,n)=(4,2) and (2,1).  However, an almost satisfactory agreement of the
results is obtained for the cases of  (m,n)=(12,6) and (8,4) within the range over  λ=10.
Hence, we concentrate our attention on the case of (m,n)=(12,6) with λ=10 for discussing
the influences of the other factors in the following. 

Figure 3 shows the influence of γ* on the contact time tcont
*, in which α*  is taken as

α*=γ*/10.  It is seen that the value of tcont
* increases with values of  γ*, that is, longer time is

necessary for two particles touching each other for larger values of γ*.  The previous results
[8] have shown that the viscosity due to dissipative forces becomes large with increased



values of γ*, which means that magnetic particles feel larger resistance in moving among
the ambient dissipative particles for such cases.  Hence, the qualitative features in Fig. 3
may be quite physically reasonable. 

 Figure 4 shows the influence of the mass of dissipative particles,  md
*, on the contact

time tcont
*.  It is seen from this figure that the contact time becomes longer as the value of

md
* increases.  That the mass of dissipative particles is large means that dissipative

particles move more slowly for the larger mass when magnetic particles bump with the
surrounding dissipative particles.   Hence, it is quite understandable that magnetic particles
take longer time for larger values of the mass, shown in Fig. 4.

        FIG.2. Dependence of collision time tcont
* on                FIG.3. Dependence of collision time tcont

* on 
        interaction parameter λ.                                       dissipative force parameter  γ 

*.

        FIG.4. Dependence of collision time tcont
* on                   FIG.5. Dependence of collision time tcont

* on
        particle mass  md

*.                                                           particle diameter dc
*.



 

                           FIG.6. Dependence of collision time tcont
* on particle number density .                       n̂d

 Figure 5 shows the influence of the diameter of dissipative particles,  dc
*, on the

contact time tcont
*.   We see from this figure that the contact time becomes shorter with

increased values of the diameter.  Since the mass of dissipative particles remains constant
such as md

*=0.01, the density of dissipative particles becomes smaller with increasing the
diameter, and the ambient dissipative particles around magnetic ones becomes fewer.
Hence, magnetic particles can move more easily among dissipative particles in such cases,
which leads to shorter contact time.  

 Figure 6 shows the influence of the number density of dissipative particles, , on then̂d
contact time tcont

*.  It is seen from Fig. 6 that the contact time becomes longer as the number
density increases.  That the number density of dissipative particles is large means that the
viscosity of the base liquid is large from a macroscopic point of view, and also that, from
a microscopic point of view, there are many dissipative particles, obstructing the motion of
magnetic particles, around them.  Hence, it is quite physically reasonable that the contact
time becomes longer with increasing the number density of dissipative particles.  

4.2. Validity of aggregate structures for a many magnetic particle system 

4.2.1. Influence of mass of dissipative particles on aggregate structures  

  We treat a multi-particle system with the number density of  nm
*0.4, composed of

eighty-one magnetic particles, to investigate the influence of the mass of dissipative
particles on aggregate structures of magnetic particles.  Figure 7 shows the results of
aggregate structures in thermodynamic equilibrium for two cases of magnetic particle-
particle interactions, i.e., for λs=10 and 3.  Unless specifically noted, all simulation results
were obtained under circumstances of dc

*=0.4 and other representative values of
parameters, which have already been shown in Sec. 4.1.  Figures 7(a) and 7(b) are for the



FIG.7. Influence of particle mass  md
* on aggregate structures for dc

* = 0.4: (a) for md
* = 0.05 and  λｓ

* =10,
(b) for md

* = 0.05 and   λｓ
* =3, (c) for md

* = 0.01 and   λｓ
* =10, (d) for md

* = 0.01 and  λｓ
* =3 , (e) for md

* = 0.005
and  λｓ

* =10, and (f) for md
* = 0.005 and   λｓ

* =3.

mass of dissipative particles, md
*=0.05, Figs. 7(c) and (d) for md

*=0.01, and Figs. 7(e) and 7(f)
for md

*=0.005; Figs. 7(a), 7(c) and 7(e) were obtained for λs=10, and Figs. 7(b), 7(d) and 7(f)
were for λs=3.  In the figures, small and large circles are dissipative and magnetic particles,
respectively.  We hear concentrate our attention on the influences of the model parameters
on particle aggregate structures, and the validity of aggregate structures themselves,
therefore, will be discussed in the later section by comparing the present results with those
obtained by Monte Carlo and Brownian dynamics simulations. 
 

Since magnetic particle-particle interactions are much more dominant than the thermal
energy for λs=10,  magnetic particles aggregate to form chain-like clusters along the
magnetic field direction, which was clearly shown in the previous works [26].  It is seen from
Figs. 7(a), (c) and (e) that the present DPD simulation results also reproduce such cluster
formation qualitatively well.  However, aggregate structures in Figs 7(a), (c) and (e) seem
to be strongly dependent on the mass of dissipative particles.   That is, although only thin
chain-like clusters are formed for the case of a relatively large mass such as md

*=0.05,
magnetic particles come to form thicker chain-like clusters with decreasing values of the
particle mass.  Now, we have to consider why much thicker chain-like clusters tend to be
formed with decreasing the mass of dissipative particles.  If the mass of dissipative particles

a c e

b d f



is small, magnetic particles ought to move easily by separating the ambient particles away
to approach each other.  The thin chain-like clusters shown in Fig. 7(a), therefore, have a
sufficient probability to aggregate to form thicker chain-like clusters such as those shown
in Fig. 7(e).  On the other hand, it is seen from Eq. (28) that dissipative particles with a
smaller mass move with a larger average velocity for a given system temperature.  Hence,
although chain-like cluster can grow thick to a certain degree, and, after that, the Brownian
motion of magnetic particles due to such active motion of dissipative particles disturbs a
furthermore growing of thick chain-like clusters.  

Since magnetic particle-particle interactions are of the slightly larger order of the
thermal energy for λs=3,  significant aggregates should not be formed for this case.
However, the present DPD simulations exhibit significant cluster formation with decreasing
the mass of dissipative particles; such false aggregate formation is significant for md

*=0.005,
and also relatively long chain-like clusters are formed even for md

*=0.05.  Two reasons may
be possible for these physically unreasonable aggregate formation.  Firstly, the present
stimulations do not take into consideration the rotational motion of magnetic particles.
Under real situations such as a limited magnetic field strength, the direction of the magnetic
moment of particles is less restricted to the magnetic field direction with decreasing the
magnetic properties of particles.  In other words, magnetic particles do the rotational
Brownian motion in such situations, which makes it difficult for magnetic particles to
aggregate along the magnetic field direction.  Hence, the first possible reason is that we do
not use the equation of motion which can simulate the rotational motion of magnetic
particles, besides the transnational motion.  The model potential, employed here for
interactions between magnetic and dissipative particles, may be regarded as the second
possible reason.  As already pointed out in Sec. 2.3, the force of a dissipative particle acts
on a magnetic particle along the line between each center of these particles, which means
that the rotational motion of the magnetic particle is not induced by the forces due to
dissipative particles.  The above two possible reasons may explain the features of
unreasonable aggregate structures shown in Fig. 7.  For the case of Fig. 7(f), some large
pack of aggregate structures are formed even for λs=3, which are induced by the ambient
dissipative particles that actively move around magnetic particles.  The outer magnetic
particles of these clusters are forced in the direction of the center of the clusters by the
ambient dissipative particles, so that such large particles remain in such a form without
being divided into small clusters.  The thick chain-like clusters along the field direction in
Fig. 7(f) is not physically reasonable, as pointed out previously,  and these aggregate
structures are formed too exaggeratedly due to the present simplified equation of motion
without the particle rotational motion; since magnetic particle-particle interactions are
slightly larger than the thermal energy for  ξ=3, only short clusters ought to be formed at
most under such circumstances.  

Finally, we consider what the appropriate mass of dissipative particles is for obtaining
physically reasonablely results.  As already pointed out previously, dissipative particles are
virtual and regarded as groups or clusters of really solvent molecules, so that it seems to
be reasonable for the mass density of dissipative particles to be taken as roughly equal to
the mass density of the base liquid of a dispersion system, which one considers for



evaluating physical quantities experimentally.  In the present study, we treat a
ferromagnetic colloidal dispersion in which metallic ferromagnetic fine particles are
assumed to be dispersed into a base liquid such as kerosene or water.  In this case, if the
ratio of the mass density of magnetic particles to dissipative ones is regarded as 58, then
the ratio of mass is 0.0130.008 for dc

*=0.4, and 0.00160.001 for dc
*=0.2.  Hence, it is for the

case of dc
*=0.4 and  md

*=0.01 that physically reasonable aggregate structures can be
regarded as being reproduced.  This consideration will be verified later by comparing with
the results obtained by Monte Carlo and Brownian dynamics simulations.                        

4.2.2. Comparison with results obtained by Brownian dynamics and Monte Carlo
simulations   

In order to verify the validity of the DPD simulation method, we compare the present
results with those which were obtained by other simulation methods.  Figures 8(a) and 8
(b) show the results obtained by the cluster-moving Monte Carlo method [11, 26], Figs. 8(c)
and 8(d) by the Brownian dynamics method [27], and Figs. 8(e) and 8(f) by the Stokesian
dynamics method [28].  Each figure has snapshots for two cases of  λs=10 and 3.  It is

FIG.8. Aggregate structures obtained by other simulation methods for λｓ
* =10 and 3: (a) for  λｓ

* =10 and (b)
for  λｓ

* =3 by Monte Carlo simulations; (c) for  λｓ
* =10 and (d) for  λｓ

* =3 by Brownian dynamics simulations;
(e) for  λｓ

* =10 and (f) for  λｓ
* =3 by Stokesian dynamics.
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FIG.9. Pair correlation functions for various cases of λｓ
* : (a) for dissipative particle dynamics simulations;

(b) for Monte Carlo simulations; (c) for Brownian dynamics simulations.

reasonable that the results for the case of  dc
*=0.4 and md

*=0.01 should be compared with
those aggregate structures, since the cluster formation for this case is regarded as the
physically most reasonable results from the above-mentioned discussion.  For a quantative
comparison, the pair correlation function along the magnetic field direction is also shown
in Fig. 9 for five cases of λs=10, 7, 5, 3 and 1.

It is seen that the present simulation results for λs=10, shown in Fig. 7(c), are a
qualitatively good agreement with those for Monte Carlo simulations in Fig. 8(a) and also
with those for the Brownian dynamics simulations in Fig. 8(c).  In addition, quantitative
agreement is seen to be quite satisfactory from comparing the results for the pair
correlation function, shown in Figs. 9(a), 9(b) and 9(c).  However, if the snapshot for the
case of λs=3, shown in Fig. 7(d), is compared with those obtained by other simulation
methods, shown in Figs. 8(b) and 8(d), we see that the aggregate structures in Fig. 7(d) are
significantly exaggerated.  As already pointed out, this discrepancy shows  again that the

a

cb



present DPD simulation method with no rotational motion and the model potential  is not
applicable to the simulations of small interactions between magnetic particles such as   λs=3.
This becomes much clearer by comparing the results for the pair correlation function,
shown in Fig. 9.  That is, the results by the present DPD simulations for  λs=10 agree well
with those obtained by other simulation methods qualitatively and quantatively, but the
present aggregate structures come to exhibit a more significant correlation, compared with
those of other simulations, as the value of   λs decreases; in other words, more significant
aggregates are formed.  For comparison, the results obtained by Stokesian dynamics
simulations are shown in Figs. 8(e) and 8(f).  Since the Stokesian dynamics method does
not take into account the particle Brownian motion, the aggregate structures are much more
tight or compact than the other simulation results. 
  

5. CONCLUSIONS

We have investigated the validity of the application of the dissipative particle dynamics
(DPD) method to ferromagnetic colloidal dispersions by conducting DPD simulations for a
two-dimensional system.  The present simulation results have clearly shown that DPD
simulations with the model interaction potential presented here give rise to physically
reasonable aggregate structures under circumstances of strong magnetic particle-particle
interactions as well as a strong external magnetic field, since these aggregate structures
are in good agreement with those of Monte Carlo and Brownian dynamics simulations.
Also, in order to activate the Brownian motion of magnetic particles, dissipative particles are
not necessarily taken sufficiently small.  This may be regarded as an important merit from
a simulation point of view, since one can simulate physical phenomena for a smaller system
with relatively short computation time.  For advancing the present work, we need to
develop, in future, another interaction model for magnetic and dissipative particles, which
induces the particle rotational motion, and also need to combine the equation of the
rotational motion in the present kinetic equations. 
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