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Abstract 
 

Signal transduction pathways generally consist of dozens of individual components 
and have an even greater number of parameters describing their reaction kinetics. While the 
general structure of some signaling pathways can be found in the literature, it is usually 
required to adapt the model and re-estimate some of the parameters from experimental data. 
However, it is not feasible to re-estimate hundreds of parameters due to the complexity and 
cost of the experiments associated with the generation of the data. Parameter sensitivity 
analysis is a useful tool for addressing this situation as it identifies the most important 
parameters, which also are the parameters which are easiest to estimate, for a signal 
transduction pathway. This paper presents a detailed parameter sensitivity analysis of the 
JAK/STAT and MAPK signal transduction pathway for stimulation with IL-6. Based upon the 
sensitivity analysis of the parameters, the most important step is the recruitment of the 
transcription factor to the dimer of the phosphorylated receptor complex. Sensitivity analysis 
also reveals that several other mechanism play an important role: desphosphorylation of the 
nuclear STAT3 dimer by PP2 as well as feedback inhibition by SOCS3.  

 

Introduction 

 
 Understanding the regulatory mechanism of cell signaling can help in designing 

therapies for many diseases and injuries. However, the large number of components involved 
in the cell signaling pathways and the interaction between different signaling pathways 
(cross-talk) return results that are difficult to interpret. To address this issue a number of 
mathematical models (Asthagiri et al., 2001; Aksan et al., 2003; Huang et al., 1996; 
Schoeberl et al., 2002; Singh et al., 2006; Yamada et al., 2003) have been developed to 
improve the understanding of regulatory mechanism in the signaling pathways. Sensitivity 
analysis provides a powerful tool to analyze these mathematical models. The analysis can 
help improve the understanding of the signaling networks as it can be used to identify the 
contribution of individual parts of the model to the signaling pathway.  

A variety of approaches to sensitivity analysis have been developed (Frey et al., 2002; 
Saltelli et al., 2005) and two methods, which are highly suitable for analyzing signaling 



pathways, are investigated in this paper: (i) differential analysis (Frank, 1978; Hwang et al., 
1978; Tomovic et al., 1972), which approximates the model by a first-order Taylor series; (ii) 
Fourier amplitude sensitivity test (FAST) (Cukier et al., 1973; McRae et al., 1982), which are 
based on the contributions of individual variables to the variance of the model output. The two 
techniques have been applied to identify the key steps in a mathematical model of an IL-6 
signaling pathway (Singh et al., 2006) which contains the JAK (Janus-associated 
kinases)/STAT (signal transducers and transcription factors) pathway and the Ras/MAPK 
(mitogen-activated protein kinases) pathway. Based upon application to the IL-6 signaling 
pathway the advantages and disadvantages of the two sensitivity analysis techniques are 
investigated.  

Differential analysis is widely used in the analysis of chemical reactions and also for 
analyzing signaling pathways (Gadkar et al., 2005; Hu et al., 2006; Liu et al., 2005). This 
technique entails the least computational burden but it returns only local information about a 
system. Additionally, it is a single parameter analysis technique which studies the effect of 
each parameter individually while fixing the remaining parameters at their nominal values. 
The Fourier amplitude sensitivity test (Cukier et al., 1973; McRae et al., 1982) is a global 
technique which is able to assess the behavior of the outputs over the entire domain of 
uncertainty of the parameters and to take parameter interactions into account. 

 

Materials and Methods 
 
Model descriptions 

The IL-6 signaling pathway model analyzed in this work was developed in a recent 
paper by Singh et al. (2006), which describes signal transduction in hepatocytes induced by 
IL-6. This model contains two pathways: Janus-associated kinases (JAK) & signal 
transducers and transcription factors 3 (STAT3) are activated in one pathway while the other 
pathway involves the activation of mitogen-activated protein kinases (MAPK). This model is 
made up of 68 nonlinear ordinary differential equations which include 118 parameters and 
can be represented by: 

),,( u
dt
d pxfx = . (1) 

The equations are derived according to the law of mass reaction or Michaelis-Menten kinetics 
and the parameters, p, are the kinetic rate constants. The states, x, are the concentrations of 
the molecules in the pathway and the input, u, is the concentration of IL-6 that stimulates the 
pathway. The output variables are the concentration of (STAT3N*)2 (dimer of activated STAT3 
in the nucleus). Due to the complexity of the system it is not possible to predict a priori which 
parts of the model are the main contributors to the dynamic behavior of the signaling pathway. 
Sensitivity analysis is used in this work to determine which parameters have the largest 
contribution to the signaling pathway for the chosen output variables. 
 



Differential sensitivity analysis 
Differential analysis is based on a Taylor series approximation. The output y can be 

expressed by 
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for a perturbation pΔ  of the parameter vector [ ]T
1 2, , , mp p p=p L . The first-order partial 

derivatives in the Taylor series are regarded as the sensitivity measures, ( , )is t y , describing 
how the variations of the parameters affect the output variable: 
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The dependence of the output on parameter variations is expressed by the linear 
approximation resulting in differential analysis being a linear method. 

The system functions (Eq. 1) of the IL-6 signaling pathway consist of polynomial 
functions (mass reaction) and rational fraction functions (Michaelis-Menten kinetics) whose 
partial derivatives with respect to parameters can be calculated analytically. Differentiation of 
Eq. 1 with respect to pi gives the following system of sensitivity differential equations: 

( , ) ( ) ( )i i

i i i
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or in the matrix form 

i i i= +s Js q& . (5) 

where { }ji xf ∂∂=J  is the state Jacobian matrix and { }jii pf ∂∂=q  is the derivative vector of 
the system functions with respect to the parameter. The sensitivity measures are calculated 
by solving the system equations (Eq. 1) and sensitivity equations (Eq. 5) simultaneously. 

To eliminate the effects by different units of the parameters the sensitivity measures 
are often normalized by their nominal values 

( ) ( )i
i i
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y
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To simplify the interpretation of the results, the cumulative effect of the sensitivity over a time 
interval is usually considered. This is done by taking the root of the sum of the squares of the 
elements at different time points resulting in a sensitivity measure of a parameter given by  
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where NT is the number of the time points. 
 
Fourier amplitude sensitivity test (FAST) 

As the output of the systems is affected by changes in the parameters, it is possible to 
use the variance of the changes in the output as an indicator of importance of the parameters. 
Fourier amplitude sensitivity test (FAST) uses the square root of the partial variance  



( )= Var (E( ( ) | ))
ji p jS t y t p  (8) 

as a sensitivity measure for the parameter pi. Var (E( | ))
ip iy p , the variance of the conditional 

expectation E( | )iy p , denotes the contribution of a variation of the parameter pi to the total 
variance Var(y).  Efficiently estimating the variance is the key procedure of FAST as it is 
rarely the case in practice that the variance can be calculated analytically. 

FAST uses the distribution functions to express the uncertainties of the parameters, 
assuming their joint probability density function is f(p). From the joint probability density 
function, the variance of the output variable can be calculated to be 

( ) ( ) ( )22Var E Ey y y= − , (9) 

where the expectation is express by 

( ) 1 2E ( ) ( ) my y f dp dp dp= ∫ ∫ p pL L . (10) 

The core feature of FAST is to attribute each parameter ip  to a transform function of a 
scalar s. When s varies, all the parameters are perturbed simultaneously. The series of 
transformations define a search curve in the parameter space. If the transformations are 
selected properly (Cukier et al., 1973; McRae et al., 1982; Saltelli et al., 1999), the search 
curve can scan every point in the parameter space. Then the multi integration over the 
parameter domain (Eq. 10) can be converted to a single integration over the s domain 
according to the ergodic theorem.  

In a next step, FAST uses a Fourier transformation to calculate the single integration 
over the s domain. According to Parseval’s theorem the integration along the real axis is 
equal to the sum of the Fourier coefficients in the frequency domain. The contribution of 
perturbations of a parameter to the total output variance is also determined by the Fourier 
coefficients. 

For this work the squares of the sensitivity values at different time points are added to 
evaluate the cumulative effect over the time interval and the sensitivity measure of a 
parameter is given by 
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where NT is the number of the time points. 

 

Analysis of the Signaling Pathways and Comparison of Results 
 
Results by the local sensitivity analysis and the global sensitivity analysis 

The two sensitivity analysis methods are applied to the described IL-6 signaling 
pathway model (Singh et al., 2006). The number of required simulations for evaluation by 
FAST is approximately (Cukier et al., 1975) 

2.52.6s pN N≈  (12) 
where Ns is the number of simulations and Np is the number of parameters. Since the model 



contains 118 parameters, it would require nearly 400,000 simulations to determine the 
parameter sensitivities. However, to perform such a large number of simulations is not 
possible with the current computational resources. Instead, local parameter sensitivity 
analysis is performed on the model with 118 parameters and the 50 most important 
parameters from this local analysis are chosen as the candidates for global sensitivity 
analysis where other parameters are fixed on their nominal values.  

In the analysis the concentration of IL-6 serves as the input to the model and is 
changed from 0 to 0.5 nM at time 0. The simulations are carried out for a 24 hr time period as 
the dynamic response of the system is captured within this time interval. The number of 
simulations for global analysis is chosen to be 25001 as this number satisfies the Nyquist 
theorem (Cukier et al., 1975).  

The sensitivity profile of the activated transcription factor (STAT3N*)2 in the nucleus 
with respect to the parameter kf7 by the differential analysis is shown in Fig. 1. The sensitivity 
values are all positive, i.e. an increase in the value of kf7 will increase the concentration of 
(STAT3N*)2. The time-dependent sensitivity calculated by FAST is also shown in Fig. 2 for 
two different ranges of perturbations. One observation is that the sensitivity profile of FAST 
with small perturbations (Fig. 2a) is only different by a factor of a constant to the profile by the 
differential analysis (Fig. 1). This property will be explained later in the paper.  
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Fig 1. The local sensitivity profile of (STAT3N*)2  with respect to the parameter kf7. 
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Fig 2. The sensitivity profiles of (STAT3N*)2  with respect to the parameter kf7 by FAST with 
perturbations (a) from 99% to 101% nominal value and (b) from 10% to 1000% nominal value. 

 
The results obtained by the two analysis techniques for small perturbations (99%-

101% nominal values) and large perturbations (10%-1000% nominal values) are summarized 
in Table 1. The parameters are ranked by their cumulative effect over the time interval (Eq. 7 
and Eq. 11 respectively). To compare the two procedures the rank values are normalized by 
the largest rank value. 
 

Table 1.  Summary of the results by the two methods 
 

FAST Differential 
Analysis ΔP: 99-101% ΔP: 10-1000% No 

Symbol Value Symbol Value Symbol Value 
1 kf7 1 kf7 1 kf7 1
2 kf32 0.748 kf32 0.748 kf21 0.9782
3 kf21 0.7129 kf21 0.7128 Vm24 0.7639
4 kf8 0.7061 kf8 0.706 kf8 0.7593
5 kb7 0.6667 kb7 0.6667 kf26 0.7532
6 kf20 0.5628 kf20 0.5627 kf27 0.7389
7 kb20 0.5492 kb20 0.5491 kf28 0.6619
8 kf42 0.4772 kf42 0.4773 kb7 0.6252
9 Vm24 0.4503 Vm24 0.4503 kf31 0.6019
10 kf26 0.4503 kf26 0.4503 ka26 0.5989
11 kf27 0.4472 kf27 0.4472 kf29 0.5936
12 kf45 0.4191 kf45 0.419 kf70 0.592
13 Km24 0.4131 Km24 0.4132 kf48 0.5865
14 ka26 0.4077 ka26 0.4077 Km24 0.569
15 kf70 0.4071 kf70 0.4071 kf20 0.5657
16 kf31 0.4056 kf31 0.4055 kb28 0.563
17 kb27 0.3922 kb27 0.3921 kb27 0.554
18 kf28 0.388 kf28 0.388 kb48 0.5274
19 kb28 0.3872 kb28 0.3871 kf71 0.4793
20 kf29 0.3654 kf29 0.3654 kb29 0.4765
21 kb29 0.3591 kb29 0.3591 kf42 0.4625
22 kf71 0.3301 kf71 0.3301 kf32 0.4577
23 kb45 0.3027 kb45 0.3028 kb20 0.4196
24 kf19 0.2603 kf19 0.2603 kf19 0.4077
25 kf18 0.2195 kf18 0.2196 kb18 0.3138

 
Comparison of results from local analysis and global analysis techniques 

It can be concluded from Table 1 that the results of the global analysis with small 
perturbations are very similar to those of the local analysis. The results by FAST when the 
parameters are perturbed from 99 percent to 101 percent of their nominal values are identical 
to the ones computed for local analysis. In fact the two analysis techniques are equivalent 
when the system is linear in the parameters and the parameters are independently uniform 
distributed. Suppose the output is  



1 1 2 2( ) ( ) ( ) ( )m my t a t p a t p a t p= + + +L , (13) 

then the partial variance of y with respect to pi in the FAST method is 
2

2 2 2( )Var (E( ( ) | )) ( ) Var( ) ( )
12i
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where ip  is the nominal value of parameter ip , ui ip p⋅  and li ip p⋅  are the upper bound and 
the lower bound, respectively. The normalized partial differential is given by 
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i

i
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y p y
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∂

. (15) 

It can be concluded that the square root of the partial variance is proportional to the 
normalized partial differential. This also illustrates that linearization of the model is a good 
approximation in a small range around the nominal point.  

If global analysis techniques use small perturbations, then the parameter interactions 
become negligible since the system under study is approximately linear in the parameters. 
However, if large perturbations are applied then the nonlinear properties of the system 
become dominant and the parameter interactions will have a significant effect on the results. 
For example, as the perturbations increase the importance of the parameter kf32, as noted by 
its position on the list, decreases from 2 to 22 as computed by FAST. This change can serve 
as an indicator that local analysis may not always be appropriate when dealing with systems 
where parameter values are within a large uncertainty interval.  

Local analysis techniques have been extensively explored in the past while global 
methods have become more popular over the last 20-30 years. The reason for this is that, 
while global analysis techniques provide more information and can even reduce to the results 
derived from local analysis, they are computational significantly more expensive than local 
techniques. For example, for a computer with a P4 3.4G CPU, 2G Memory, and a Windows 
operating system, the time for the differential method to obtain the sensitivity measures of all 
118 parameters is roughly 25 minutes while the time for the FAST method is more than 12 
hours even though only 50 parameters are used in this latter case. Due to the computational 
effort, local analysis methodologies cannot be completely replaced by global analysis 
techniques. Local analysis can act as a valuable screening method to identify the important 
parameters for further investigation by global techniques. 

 

Discussions and Conclusions 
 
Significance of recruitment of the transcription factor STAT3 to the dimer of the 
phosphorylated receptor complex (IL6-gp80-gp130-JAK*)2. 

It is seen from Table 1 that the parameter kf7 is computed to be the most important 
parameter by all two sensitivity analysis techniques. kf7 is the forward rate constant of the 
reaction where the transcription factor STAT3 in the cytoplasm is recruited to the dimer of the 



phosphorylated receptor complex (IL-6-gp80-gp130-JAK*)2. Subsequently, the activated 
STAT3 dimers translocate to the nucleus. This reaction is the initial step for signal 
transduction through the JAK/STAT pathway.  

The dimer of the phosphorylated receptor complex (IL-6-gp80-gp130-JAK*)2 also 
activates the Ras/MAPK pathway by recruiting the Src homology domain 2 (SH2)-containing 
protein tyrosine phosphatase SHP2. As a result, the recruitment of STAT3 competes with the 
recruitment of SHP2. When kf7 is large then the receptor complex (IL-6-gp80-gp130-JAK*)2 is 
more likely to participate in signaling through the JAK/STAT pathway instead of the MAPK 
pathway. Thus kf7 has a significant effect on the activation of STAT3.  

Varying kf7 also drastically changes the importance of other parameters. The results 
calculated by the FAST method when kf7 is fixed at different values are shown in Table 2. In 
the case of large kf7 the affinity of STAT3 binding to (IL-6-gp80-gp130-JAK*)2 is high and the 
JAK/STAT pathway is highly activated. Inhibitors in the JAK/STAT pathway will have a 
significant effect on inactivating the transcription factor. The parameters kf20, kf21 (the 
nuclear phosphatase PP2 deactivates the phosphorylated STAT3 dimer in the nuclear), Vm24, 
kf26, kf27 (the feedback-inhibition by the suppressor of cytokine signaling 3, SOCS3) are 
ranked at the top positions. On the other hand, in the case of small kf7 the JAK/STAT 
pathway is partially activated. The effects of the inhibitors in the pathway decline and the 
positions of their parameters decrease. However, the cross-talk with the Ras/MAPK pathway 
becomes more important. The parameters kf48 (recruitment of Ras-GTP* to (IL6-gp80-
gp130-JAK*)2-SHP2*-Grb2-Sos) and kf32 (inhibition by recruitment of SHP2 to (IL6-gp80-
gp130-JAK*)2 ) are ranked at the top positions. Other parameters in the Ras/MAPK pathway 
such as kf71, kb48, kf42 also become more important when kf7 is small. The significant 
changes with different values of kf7 prove the key role that recruitment of the transcription 
factor to the dimer of the phosphorylated receptor complex in the JAK/STAT pathway plays.  

 
Table 2.  Results by FAST for cases where kf7 is fixed at different values (10%, 25%, 100%, 
400%, 1000% nominal value) while other parameters are perturbed from 10% to 1000% of 

their nominal values 
 

No. 10% kf7 25% kf7 100% kf7 400% kf7 1000% kf7 
1 kf48 22.88 kf48 45.277 kf21 127.3585 kf21 323.21 kf21 511.08
2 kf32 18.081 kf21 42.556 kf32 106.9433 kf8 243.69 kf8 390.52
3 kf71 16.949 kf32 39.696 kf8 99.75406 kf27 232.26 kf27 384.29
4 kf21 16.548 kf71 37.665 kf48 99.24594 kf26 228.37 kf26 378.72
5 kb7 15.759 kb7 35.332 kb7 95.06144 Vm24 225.41 Vm24 378.13
6 kf8 14.831 kf8 34.198 kf26 89.23968 kb7 218.43 kb7 328.7 
7 kf20 14.648 kf20 32.326 kf20 87.89009 kf32 198.67 kf31 324.98
8 kb48 14.523 Vm24 31.753 kf27 87.20311 kf31 194.15 kf28 323.04
9 kf26 12.357 kf26 31.492 Vm24 85.29502 kf20 191.61 kf70 307.79
10 Vm24 12.307 kb48 30.322 kf71 83.55244 kf28 189.73 kf29 307.24
11 kf42 11.993 kf42 28.416 kb48 77.61289 kf29 183.4 ka26 306.14
12 kf19 11.922 kf27 27.999 kf31 74.35815 kf48 183.24 kf20 280.47



13 kb18 11.738 kf19 27.856 Km24 69.80567 kf70 180.86 Km24 276.32
14 kf18 11.498 kb20 27.677 kf29 69.50425 ka26 180.68 kb27 276.1 
15 kb20 10.831 kf28 27.443 ka26 69.12723 Km24 171.16 kb28 274.2 
16 kf45 9.9303 kf31 24.98 kf28 69.02862 kb48 165.23 kb29 257.07
17 kf27 9.9222 kf18 24.165 kf70 67.89437 kb28 162.67 kf32 242.28
18 ka26 9.8 kf29 23.371 kf42 67.3212 kb27 161.49 kf48 239.7 
19 kf31 9.7821 kf70 23.362 kf19 63.41135 kb29 150.92 kb48 235.82
20 Km24 9.7425 Km24 22.964 kb20 62.75963 kf71 149.57 kb20 213.38

 
Deactivation of the JAK/STAT signaling transduction pathway by negative control 
mechanisms 

There are several regulatory mechanisms in the IL-6 signaling pathway which have a 
major effect on signaling through the pathway. These include the cytoplasmic tyrosine 
phosphatase PP1, the nuclear tyrosine phosphatase PP2, the suppressor of cytokine 
signaling 3 SOCS3 and the Src homology domain 2 (SH2)-containing protein tyrosine 
phosphatase SHP2. Sensitivity analysis identified reaction parameters associated with these 
mechanisms as being of high importance to signal transduction. 

The nuclear tyrosine phosphatase PP2 phosphorylates the dimer of phosphorylated 
transcription factor STAT3 so that they can translocate from the nucleus. The inactivated 
transcription factors in the cytoplasm will be phosphorylated again by recruitment to the 
receptor complex. The cycling of STAT3 between the nucleus and the cytoplasm plays an 
important role in signal transduction (Haspel et al., 1996; Yamada et al. 2003), as it 
decreases the accumulation of the transcription factors in the nucleues and prolongs the 
signal duration. This observation is supported by the sensitivity analysis. The parameter kf21 
in the decomposition of the recruitment of PP2 to the transcription dimer to deactivate STAT3 
is ranked 2nd by the two global sensitivity analysis techniques and the rank values are only 
slightly less than those of kf7. The parameter kf20 in the formation of PP2 and the dimer of 
activated STAT3 also have a high rank. Based on the sensitivity profiles of kf21 and kf20 
shown in Fig. 3a, both parameters have significant effects on the overall signal strength. 

The deactivation mechanisms by SOCS3 and SHP2 have been extensively studied in 
the literature (Lehmann et al., 2003; Schmitz et al., 2000; Sommer et al., 2005). Fig. 3b 
shows the sensitivity profiles of kf32 (recruitment of SHP2 to gp130) and kf27 (recruitment of 
SOCS3 to gp130).  The sensitivity of kf32 has a peak after a very short period of time as 
SHP2 has a significant effect on the signal amplitude and it is important for early signal 
modulation. As time passes, the sensitivity of kf32 becomes smaller than the sensitivity of 
kf27 indicating that reactions associated with the effect of SOCS3 have a strong effect on the 
signal duration of the system. Though both inhibitors bind to the same receptor gp130, their 
effects are distinct. The prediction by sensitivity analysis is consistent with the conclusions 
from experiment data (Lehmann et al., 2003), as SOCS3 has a major effect on the long-term 
system response, while at the same time it takes roughly 30 minutes before a significant 
amount of SOCS3 is formed in these experiments. 
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Fig 3. The sensitivity profiles of (a) kf20 and kf21, and (b) kf32 and kf27 by FAST 
 

The cytoplasmic tyrosine phosphatase PP1 attenuates the signal transduction by 
dephosphorylation of activated STAT3. However, from the sensitivity analysis results the 
parameters, such as kf10, kf11, in the reactions where PP1 binds to the activated STAT3 and 
its dimmer, have small rank values. This means that the inhibitor PP1 does not significantly 
affect the JAK/STAT signaling pathway. 
 
Conclusion  

Mathematical modeling and simulation of complex signaling pathways has received 
increasing attention in the area of quantitative cell biology over the least few years. As many 
of the underlying biological mechanisms are not fully understood, it is important to study the 
effect of uncertainties on a system and determine which parameters should be estimated 
from data to account for these uncertainties. Towards this end, sensitivity analysis is a 
powerful tool to analyze mathematical models containing uncertain parameters. 

Two sensitivity analysis techniques were investigated in this work and their advantages 
and disadvantages were discussed based upon application to an IL6 signaling pathway. 
While the results returned by the different techniques were similar to local analysis, the 
Fourier amplitude sensitivity test (FAST) has some advantage as it is a global sensitivity 
method which can explore the whole parameter space and take parameter interactions into 
account. 

 From the sensitivity analysis results it is identified that binding of the transcription 
factor STAT3 to the dimer of the phosphorylated receptor complex (IL6-gp80-gp130-JAK*)2 is 
the most important reaction governing these pathways. Among the regulatory mechanisms in 
the pathway, reactions involving PP2 were determined to be the most important ones for the 
JAK/STAT pathway. Parameter associated with reactions involving SHP2 have a large effect 
on the signal amplitude while parameters associated with reactions involving SOCS3 mainly 
affect the signal duration. Parameters associated with reactions related to PP1 had the least 
effect of the ones mentioned here. 
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