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Abstract 

The most accurate predictions of forced convection in fully developed turbulent flow 
are produced by modifications and generalizations of the Reichardt analogy between 
momentum and energy transfer. That analogy was originally derived by combining the 
differential energy and momentum balances, making several ingenious mathematically 
based approximations, introducing an algebraic model for turbulent transport, and finally  
integrating over the radius in closed form. Subsequent improvements have resulted from the 
introduction of a better model for transport by the turbulent fluctuations. 

A comparable analogy between convective heat transfer and an energetic chemical 
conversion has been devised by a completely different process of modeling. First, an exact 
algebraic solution was derived for convection in fully developed laminar flow with a 
volumetrically uniform rate of reaction and no radial diffusion of species. That solution, 
which relates the Nusselt number to the ratio of the heat flux at the wall to the heat of 
reaction, was then generalized for developing reaction and convection, including diffusion, 
at the expense of the introduction of one functional idealization and one arbitrary 
coefficient. The error due to the functional idealization, which consists of expressing the 
rate of reaction in terms of the mixed-mean temperature, appears to be completely 
negligible. The arbitrary coefficient, which was evaluated by means of essentially exact 
numerical computations, proved to vary regularly and moderately from condition to 
condition and thereby to be susceptible to correlation and generalization. 

The new analogy incorporates an explicit dependence on Re, Pr, Sc, as well as on a 
number of other dimensionless parameters involving the frequency factor, the energy of 
activation, and the thermicity of the reaction, the heat flux density or the temperatre at the 
wall. It is applicable for both laminar and fully turbulent flow. In combination with a 
complementary expression for the chemical conversion, the analogy becomes predictive in a 
numerical sense. The resulting predictions have been tested by comparison with essentially 
exact numerical solutions, and have proven satisfactory even for conditions that produce 
gross and seemingly chaotic enhancement or attenuation of the Nusselt number. 
The success of this analogy as well as the improved one of Reichardt suggests that similar 
theoretically structured expressions may be possible for other processes involving transport 
and/or reaction. 
 

Introduction 
 

When gas-phase chemical reactions are carried out in steady flow through a tube, 
heating at the outer surface may be necessary to initiate the reaction. If the reactions are 
endothermic, heating may also be required to prevent premature self-quenching because of 
the resulting decrease in temperature. If the reactions are exothermic, cooling may be 



 

necessary to minimize undesirable side-reactions associated with an excessive temperature 
and/or to prevent a thermal run-away. 

A number of prior theoretical analyses and experimental investigations have 
revealed that energetic reactions may greatly enhance or mildly attenuate the rate of 
compensatory heat exchange as characterized by the Nusselt number. Unfortunately, these 
prior investigations of combined reaction and convection are fragmentary and incoherent, 
and have generally been overlooked in the literature of both heat transfer and reaction 
engineering. One objective of the long-term investigation, of which the current work is a 
part, is to evaluate such enhancements and attenuations systematically and quantitatively by 
means of  the numerical solution of the differential equations of conservation, and, insofar 
as possible, to explain the results qualitatively and devise generalized predictive or 
correlative expressions for the behavior. 

The objective of the phase of the work reported here is limited to the development of 
an analogy between the fractional conversion due to an energetic chemical reaction and the 
Nusselt number for compensatory heat exchange when they occur simultaneously. The 
expectation is that such an analogy will prove useful in explaining if not predicting, the 
interactions between reaction and heat transfer just as have the classical analogies for 
momentum transfer and heat transfer. 

Two thermal boundary conditions are considered, first a uniform heat flux density 
through the wall of the tube, and second a uniform wall-temperature. A uniform heat flux 
density has been the thermal boundary condition of choice in most theoretical analyses of 
forced convection with and with out an energetic chemical reaction because the 
mathematical formulations and processes of solution are then the simplest. Such a condition 
can be closely approximated in practice by countercurrent heat exchange between fluid 
streams in the inner and outer passages of an annulus. Herein, the reacting fluid is 
postulated to flow through the inner tube. In the case of heating but not cooling, a uniform 
heat flux density may also be attained with a single tube by means of electrical-resistance 
heating of the wall. On the other hand, a uniform temperature can be imposed to a good 
approximation by means of an external condensing fluid for cooling or an external boiling 
fluid for heating. 

The modeling of energetic chemical conversions is much more difficult than the 
modeling of pure convection because most chemical processes involve  multiple reaction 
mechanisms, each of which depends exponentially and differently on temperature, and 
many of which are non-equimolar. The general model for combined reaction and heat 
transfer consists of a set of partial differential equations for the conservation of species that 
are nonlinear in temperature, generally nonlinear in concentration, and strongly coupled 
with the partial differential equation for the conservation of energy as well as with each 
other. The number of significant rate mechanisms, independent chemical species, and 
parameters associated with the rate mechanisms may exceed 100, 20, and 50, respectively.  
This multiplicity is to be contrasted with pure convection, which, insofar as the flow is fully 
developed and variation of the physical properties with temperature are neglected, may be 
modeled by a single linear partial differential equation, a single dependent variable 
(temperature) and three parameters (the Reynolds number, the Prandtl number, and the 
mode of heat transfer at the wall). Herein, in the interests of simplicity and insight, and as a 
first step, only a single, first-order, irreversible, equimolar, but temperature-dependent 



 

reaction-rate mechanism is considered. On the other hand the radial transport of momentum, 
energy, and species are taken into account. 

To meet the limitations of this format on length a listing of the nomenclature and 
some of the tabulations of the computed values have been omitted. They will be included in 
a subsequent publication in the AIChE Journal. 
 

Analogies for Momentum and Heat Transfer in Turbulent Flow 
 

Analogies between momentum and heat transfer provide better predictive and 
correlative expressions for convective heat transfer in turbulent tubular flow than do purely 
empirical ones. The best-known analogies are those of Reynolds, Prandtl, and Colburn. 
They are all three well-known and will not be described herein. Reichardt1 in 1950 derived a 
greatly improved analogy that is less well known although it provides the structure for many 
correlating equations. He combined the two-dimensional differential momentum and energy 
balances to obtain a single ordinary differential equation in terms of the radius, and 
introduced an algebraic expression for turbulent transport in the boundary layer. Then, in 
order to permit integration of the resulting expression in closed form, he made some 
ingenious mathematical approximations that are applicable for large and moderate values of 
Pr. These approximations imply a uniform wall-temperature. Improvements and adaptations 
have since been made by a number of investigators (see Churchill2 for a discussion thereof). 
As an example of such modifications, Churchill and Zajic3 not only improved upon the 
Reichardt analogy by substituting a more accurate expression, both functionally and 
numerically, for the contribution of the turbulent fluctuations, but also generalized this 
analogy for uniform heating as well as uniform wall-temperature. Their final result can be 
expressed as follows: 
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Here, γ is a theoretically defined integral that depends mildly on Re, Prt/Pr, and the thermal 
boundary condition at the wall. 

All of the afore-mentioned analogies, including Eq. (1), are limited in applicability 
to large and moderate values of Pr, but Churchill and Zajic also devised a an expression 
equivalent to Eq. (1) for Pr ≤ Prt ≅ 0.86, which need not be reproduced here. 
The purpose of this digression is to serve as a guide and point of referral for the derivations 
that follow for the combination of an energetic chemical reaction and heat exchange. In 
order to avoid excessive expectations for an analogy between reaction and heat transfer, it 
should be noted that implementation of the Reichardt analogy, as well as those of Reynolds, 
Prandtl, and Colburn, to predict heat transfer requires a supplemental expression to predict 
the friction factor. Also, it should be noted that the Prandtl analogy incorporates an 
unspecified function, that the Colburn analogy incorporates an implicit empirical coefficient 
(of unity) and two explicit empirical exponents (0.8 and 1/3), that the Churchill-Zajic 
modification of the Reichardt analogy incorporates an empirical coefficient (13.62) arising 
from the representation of the turbulent transport near the wall, as well as a theoretically 
based function, namely γ{Re,Pr, mode}. Furthermore, an energetic chemical reaction 
invokes many variables and dependencies in addition to those for pure convection. 
 



 

The Crucial Step in Devising an Analogy between Reaction and Heat Transfer 
 

The step that proved absolutely crucial to what follows was the prior derivation by 
Churchill4 of an exact solution in closed form for a very idealized process of flow, reaction, 
and heat transfer, namely fully developed convection in fully developed laminar flow 
through a round tube with a volumetrically uniform rate of reaction, a uniform heat flux 
density through the wall, and radial conduction of heat, but no the radial diffusion of 
species. A volumetrically uniform rate of reaction might be rationalized on the basis of 
asymptotically small perturbations in the composition due to the reaction and in the 
temperature due to the combination of the heat of reaction and the imposed heat flux. In any 
event, the solution can be expressed as 
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Here, Q represents the dimensionless ratio of the volumetrically uniform input of energy by 
reaction to the uniform heat flux density from the wall. As Q → 0, Nu → 48/11, which is the 
well-known solution for fully developed laminar convection with uniform heating or 
cooling and no reaction. For negative values of Q, corresponding to the combination of an 
endothermic reaction and heating through the wall or to an exothermic reaction and cooling 
through the wall, Nu increases and becomes unbounded as −3Q/11 increases in magnitude 
and approaches unity. For the thermally unbalanced case of a positive value of Q, 
corresponding to an exothermic reaction and heating from the wall, or the converse of both, 
Nu is seen from Eq. (2) to decrease slowly as Q increases. Eq. (2) has exactly the same form 
as the well-known solution for the effect of viscous dissipation on the heat transfer 
coefficient. Despite the gross idealizations, the predicted effects of Eq. (2) for positive and 
negative values of Q are given credence by their qualitative congruence with prior 
theoretical and experimental predictions of enhancement and attenuation due to energetic 
reactions. Most important, Eq. (2) can be interpreted as an analogy between the rates of 
chemical reaction and of heat transfer, as represented by Q and Nu/(48/11), respectively, 
with a theoretical coefficient of 3/11. 

A solution in closed form for turbulent flow is not feasible even for the extremely 
idealized conditions that led to Eq. (2) for laminar flow. However, it may be speculated that 
the form of Eq. (2) with an empirical coefficient β in place of 3/11 and an appropriate 
asymptotic value in place of 48/11 might prove useful as a correlative expression and/or an 
analogy. Such an expression is 
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Here, Nuo is the Nusselt number for fully developed turbulent convection with no heat of 
reaction. In the context of an analogy, the dimensionless rates of chemical reaction and 
convection are now represented by Q and Nu/Nuo, respectively. As may be inferred from 
Eq. (3), enhancement and attenuation of Nu are characterized by the product βQ. 

Eq. (3) was tested with essentially exact numerically calculated values of Nu for 
turbulent flow for a wide range of values of Re, Pr, and Q, but otherwise the same 
conditions as those for which Eq. (2) was derived. The corresponding values of β not only 
differ from the fixed value for laminar flow, but reveal a moderate dependence on Re and 
Pr. This dependence is disappointing, but that disappointment is assuaged by the complete 



 

independence of β from the parameter Q. Since the small variance in the values of β for a 
given value of Re can safely be assigned to numerical error and extreme sensitivity, the 
invariance must have an inherent theoretical basis. That particular invariance encouraged 
the development that follows. 

 

Adaptation of the Analogy for Developing Reaction and Convection 
 

Eqs. (2) and (3) are actually simpler than any of the classical analogies for 
momentum and heat transfer, but that is not the case for what follows. On purely speculative 
grounds and without great expectations, Eq. (3) was rewritten as follows for the much more 
complex and realistic case of developing reaction and developing convection: 
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Here the subscript x designates a quantity varying with axial length, and, as before, the 
subscript o designates a value in the absence of reaction. The quantity Qx is the 
dimensionless rate of reaction at x, the corresponding dimensionless rate convection is 
Nux/Nuox, and β is again an empirical coefficient. 

For uniform heating or cooling at the wall, Qx, the ratio of the input of energy by 
reaction to the heat flux from the wall in a differential length of the reactor, may expressed 
as follows: 
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Here, Z is the fractional chemical conversion of species A; k is the reaction-rate constant; a 
subscript 0, not to be confused with a subscript o, designates a value at the entrance; a 
subscript m designates a mixed-mean value, that is, the integrated-mean with respect to 
radius, weighted by the time-averaged velocity distribution; Ka0 = k0a/um  is the 
dimensionless rate of reaction; τ = qM/cMT0 is the thermicity, that is the increase in 
temperature due to an exothermic reaction (qM >0) or the decrease due an endothermic one 
(qM <0); T0  is the absolute temperature at the entrance; and J ≡ ajw/λT0 is the dimensionless 
heat flux density from the wall to the fluid.  The quantity J is an obvious analogue of Nu, 
but for uniform heating it is a specified parameter rather a dependent variable. The factor ξ 
≡ τRePrKa0 /4J is a combination of the specified variables in Eq. (5), namely those that do 
not vary with the primary independent variable Kx0 ≡ k0 x/um, the dimensionless length of 
the zone of reaction. In practice, J and τ ordinarily have opposite signs resulting in a 
negative value for ξ as well as for Qx. 

It is implied in the formulation of Eq. (5) and by the dimensionless groupings therein 
that the physical properties are independent of temperature and composition even though the 
latter two quantities ordinarily vary significantly with both radius and length within a 
tubular reactor. The resulting variation of the density and viscosity of the fluid may not be 
significant, but that of the reaction-rate constant is ordinarily too great to ignore. Therefore 
the following modification of Eq. (5) is proposed. First, the dependence of the reaction–rate 
constant on temperature is postulated to be given by the Arrhenius equation, namely, 
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The right–most form of Eq. (6), which was apparently first introduced by Churchill8 is 
utilized exclusively herein. The quantity k0 is the reaction-rate constant at the inlet 
temperature T0, as contrasted with the more familiar quantity, k∞, the reaction-rate constant 
for an infinite temperature. Although Eq. (6), in either form, is empirical, it has a theoretical 
rationale and has generally been found to reproduce experimental data for any one reaction 
mechanism with sufficient accuracy for all practical purposes. 

Next, in order to take the variation of the reaction–rate constant according to Eq. (6) 
into account in the reactor, the right-most form of Eq. (5) is re-expressed as 
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Here kemx is the effective–mean value of the rate constant over the cross-section at x. With 
these supplementations, Eq. (4) can be re-expressed as 
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The following approximation is proposed for kemx: 
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Eq. (9) is based on the speculation that the effective value of the rate constant does not 
differ significantly from its value at the mixed-mean temperature. 

In order to implement Eq. (12) in the context of the analogy, an expression is needed 
for the mixed-mean temperature ratio Tmx/T0 in terms of the mixed-mean conversion Zmx.  
The following exact energy balance over a length of the reactor from the entrance to any 
length x provides that relationship: 

                                        umπa2(Tmx – T0)cρ = CA0 Zmx qM umπa2x  + 2πaxjw                                  (10) 

Eq. (10) can be re-arranged and re-expressed in the following form: 
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The second and third terms on the right-hand side of Eq. (11) represent the contributions of 
reaction and heat exchange, respectively, to the mixed-mean temperature. 

Eq. (8) constitutes the basic analogy between reaction and heat transfer, but Eqs. (9)  
and (11) are needed for its implementation. These three equations can be combined to 
obtain the following expanded expression of the analogy: 
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Eq. (12) provides a relationship between the local Nusselt number and the local mixed-mean 
conversion. It incorporates a number of fixed parameters and one arbitrary coefficient, 



 

namely β. That coefficient is the counterpart of the arbitrary coefficients and exponents of 
the classical analogies between momentum and heat transfer. Eq. (12) includes implicit 
idealizations in structure just as do the classical analogies. In this case the implicit 
idealizations are those of Eqs. (4) and (9). The discussion of the merits and shortcomings of 
this analogy for a uniform heat flux is deferred until after the derivation of its counterpart 
for a uniform wall-temperature. 

 
An Analogy for Uniform Wall-Temperature 

For uniform heating the three dependent variables, Nux, Zmx, and Tmx/T0 can be 
reduced to two by virtue of Eq. (11), thereby allowing the formulation of a direct 
relationship between Nux and Zmx, namely Eq. (12). For a uniform wall-temperature, it does 
not appear possible to develop a simple theoretical relationship between two of the four 
dependent variables Nux, Zmx, Tmx/T0, and Jx ≡ajw/λT0. One alternative is the speculation that 
Eq. (8) remains valid if Jx is simply substituted for J, that is, if ξ is replaced by ξx ≡ 
τRePrKa0 /4Jx.  For a uniform wall-temperature, the expanded form of the analogy is thus 
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Here, NuoxT is the Nusselt number for pure forced convection with a uniform wall-
temperature. 

The dependent variable Jx may be replaced by the alternative dependent variable 
Tmx/T0 by virtue of the definition of the local Nusselt number, namely 
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It follows from Eq. (14) that 
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Here ζ ≡ τRePrKa0/2 is the characteristic group of specified variables for a uniform wall-
temperature. Substituting for ξx from Eq. (15) in Eq. (11), followed by rearrangement, 
results in the following expression explicit in Nux: 
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It should be noted that a value of Tw   is ordinarily chosen to be less than T0 and Tmx when  τ 
is positive and vice versa. 

Eqs. (13) and (16) both incorporate a dependent variable (either Jx, or ξx or Tmx/T0)  
in addition to Zmx, and in that respect suffer from comparison with Eq. (12). Even so, they 



 

have possible value in predicting the effect of the various parameters that are encompassed. 
Eq. (16) has a small advantage over Eq. (13) in that the local mixed-mean temperature is 
more readily calculated than Jx. 

 

Utilization, Evaluation and Interpretation of the Analogies 

 
The mixed–mean conversion, Zmx, in the proposed analogy between developing 

chemical reaction and heat transfer is the counterpart of the friction factor, f, in the various 
analogies between fully developed momentum and heat transfer. The friction factor for fully 
developed flow in a smooth round tube is a function only of the Reynolds number. On the 
other hand, the mixed–mean conversion is a function of the dimensionless distance through 
the tube, of the dimensionless rate of heat exchange with the wall, and of all of the 
dimensionless variables and parameters that determine the rate of reaction. This complex 
dependence might appear to preclude the derivation of an algebraic expression for Zmx as 
function of τ and J, but Churchill and Yu 5 devised a set of empirical expressions that can be 
consolidated to the following approximate one: 
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Eq. (17) provides reasonable predictions for uniform heating for all conditions. Churchill 
and Yu9 also devised an empirical expression for the prediction of Zmx for uniform wall–
temperature. but it is not reproduced here because Eqs. (13) and (16) are not proposed for 
quantitative predictions 

The coefficient β in the proposed analogy for chemical reaction and heat transfer is 
the counterpart of γ in the Churchill-Zajic modification of the analogy of Reichardt. The 
latter quantity is an integral of the velocity distribution for a uniform heat flux density and 
of the temperature distribution as well for a uniform wall–temperature. Ideally, β would 
have a single fixed value for all conditions, that is, for all values of Kx0, Ka0, Re, Pr, Sc, τ, 
E/RT0, T0, and J or Tw/T0. The difference noted between the value of β for fully developed 
laminar convection and fully turbulent convection, and the dependence of β on Re and Pr in 
the latter regime, even for the super-idealized case of volumetrically uniform reaction and 
no diffusion, extinguished that hope, but the independence of β from Q was encouraging 
and led to the speculative formulation of Eq. (3) and its detailed implementation in terms of 
Eqs. (12), (13), and (16). The next best result would be a generalized and/or theoretically 
based expression for β analogous to that for γ. 

As a first step in the attempt to devise such an expression, values of β were 
calculated from the values of Nux and Zmx computed by Yu and Churchill6,7, who solved the 
partial differential equations of conservation by finite-difference methods for a uniform heat 
flux at the wall and a uniform wall-temperature, respectively. Their tests of convergence 
with grid-size, and their comparisons with theoretical and prior numerical solutions for no 
reaction indicate that the finite-difference solutions are exact for all practical purposes. In 
the interests of clarity, the calculated values of β for laminar and turbulent flow, and for a 
uniform heat flux and a uniform wall-temperature are examined separately. Since the focus 



 

herein is on the analogy, the computed values of Zmx by Yu and Churchill7,8 rather than those 
predicted by Eq. (21) were used to calculate β. 

Laminar flow with uniform heating and cooling 
The values of β for a uniform heat flux were determined from Eq. (12). The so-computed 
values of β at the arbitrary but representative value of Kx0 = 0.50 are illustrated in Table1 for 
the 8 conditions chosen by Churchill and Yu10 for their numerical computations in the 
laminar regime with uniform heating or cooling at the wall. The fixed parameters are Re = 
400, Pr = 0.70, and Ka0 = 0.096, for which Nuox = 6.2994, Sc = 0.20, E/RT0 = 17.815, and 
T0 = 300K. The independent variables τ and J, the parameter ξ, and the dependent variables, 
Nux, Tmx/T0, and kemx/k0 are included in Table 3 for reference.  The values of β in Table 1 do 
not vary greatly despite a wide range of conditions as represented by a 10-fold variation in ξ 
and the enhancement of Nux by a factor of greater than 25 for one set of conditions (τ = 0.05 
and J = −0.05) and by a factor of greater than 4 for the converse condition (τ = −0.05 and J 
= 0.05). In this respect, Eq. (12) compares favorably with the analogy of  Reichardt as 
improved by Churchill and Zajic7. However, the coefficient γ in the improved analogy is a 
function only of Re and the thermal boundary condition, whereas β is apparently a function 
of Kx0, τ, and J, and possibly of Re, Pr, Ka0, Sc, E/RT0, and T0 as well. 
 
Table 1. Variance of Coefficient β in Laminar Flow at Re = 400 with Pr = 0.7, Sc = 0.2,  
               E/R/T0 = 17.815, T0 = 300K and Kx0 =0.50, for which Nuox = 6.2994 
 

 
The dependence of β on Kx0 is examined in Tables 2 and 3. Values of Nuxo, corresponding to 
convection without reaction, are included as a point of reference for the enhancement of Nux 
by the reaction.  In Table 3, the combination of τ = −0.01 and J = 0.05 is seen to result in a 
nearly invariant mixed-mean temperature until the conversion approaches unity and 
thereafter a linear increase. Apparently as a consequence of this near-isothermality, β 
increases monotonically with Kx0, and produces a modest enhancement of Nu for all values 
of Kx0. A plot by Yu and Churchill6 of the numerically computed values of β versus ln{Kx0} 
for all eight of the test conditions suggested the following empirical correlating equation: 

                                                            { }0ln xKBA +=β                                                         (18) 

Evaluating the coefficients A and B for τ = -0.01 and J = 0.05 at Kx0 = 0.1 and 0.6 results in 

   τ    J   −ξ     Zmx     Nux  Tmx/T0  kemx/ k0      β 
 0.01 −0.10 0.672 0.35533     6.7047 0.99517 0.93342 0.14956 

 0.01 −0.05 1.344 0.37215     7.4208 1.00002 1.00033 0.17903 

 0.05 −0.10 3.36 0.40865        10.7279  1.01303 1.25745 0.16522 
 0.05 −0.05 6.72 0.43155 161.3508 1.01785 1.36732 0.18398 

−0.01  0.10 0.672 0.40121     7.1183 1.03394 1.06211 0.26918 
−0.01  0.05 1.344 0.32081     7.8202 0.99987 0.99777 0.23496 

−0.05  0.10 3.36 0.35408   11.5157 0.98970 0.83080 0.25122 
−0.05  0.05 6.72 0.33948   27.0054 0.98673 0.78694 0.21949 



 

Table 2. Selected Characteristics for Uniform Heating in Fully Developed Laminar Flow at                            
Re = 400 with Pr = 0.7, Sc = 0.2, Ka0  = 0.096, τ = –0.01, J = 0.05, and ξ = –1.344 

 
      

                                              β = 0.2585 + 0.04846 ln{Kx0}                                         (19) 

The representation of β by Eq. (19) is seen in Table 2 to be somewhat crude, but, as 
a fortuitous consequence of insensitivity, the resulting predictions of Nux are of sufficient 
accuracy for all practical purposes. The choice of other values of Kx0 for the evaluation of 
the constants in Eq. (19) would result in different values of A and B but would not change 
the overall accuracy of the predictions of β and Nux significantly. 

Table 3.  Selected Characteristics for Uniform Heating in Fully Developed Laminar Flow at 
                Re =400 with Pr = 0.7, Sc = 0.2, Ka0 = 0.096, τ = 0.05, J = −0.05, and ξ = −6.7 
 

 
 

  K0x      Zmx Nuxo    Nux  Tmx/T0 kemx/k0   - Qx      β    Β19  

  0.01 0.009853 22.135 24.844 0.99998 0.9995 1.330 0.0820 0.0453 
  0.02 0.019588 17.523 20.212 0.99995 0.9992 1.317 0.1013 0.0789 
  0.05   0.048104 12.893 15.487 0.99989 0.9981 1.290 0.1309 0.1238 
  0.10 0.09347 10.268 12.685 0.99981 0.9966 1.214 0.1569 0.1569 
  0.20 0.17713   8.239 10.360 0.99971 0.9948 1.100 0.1860 0.1905 
  0.50 0.38281   6.299   7.8202 0.99988 0.9981 0.828 0.2349 0.2349 
  1.00 0.61921   5.306   6.2691 1.00121 1.0225 0.523 0.2937 0.2685 
  2.00 0.86258   4.687   5.1198 1.00618 1.1171 0.206 0.4096 0.3021 

  Kx0      Zmx Nuxo     Nux    Tmx/T0   kemx/k0   −Qx     β    β20 Nux20 

   0.01 0.009858 22.135   46.4443 1.000421 1.00752 6.703 0.07809 0.07809   38.74 
   0.02 0.01965 17.523   48.5847 1.000834 1.01495 6.686 0.09562 0.88075   42.62 
   0.03 0.02940 15.291   53.5328 1.001247 1.02243 6.669 0.10712 0.10219   48.01 
   0.04 0.03910 13.888   59.5900 1.001657 1.02991 6.650 0.11533 0,11220   54.70 
   0.05 0.04875 12.893   67.7090 1.002066 1.03741 6.631 0.12209 0.11997   63.05 
   0.06 0.05836 12.137   78.0892 1.002472 1.04491 6.612 0.12773 0.12631   73.64 
   0.07 0.06793 11.536   91.5932 1.002876 1.05241 6.592  0.13259 0.13168   87.40 
   0.08 0.07745 11.041 109.7004 1.003278 1.05993 6.571 0.13687 0.13632 105.9 
   0.09 0.08694 10.625 135.0736 1.003677 1.06745 6.550 0.14066 0.14042 132.4 
   0.10 0.09635 10.268 172.8324 1.004073 1.07495 6.528 0.14409 0.14409 172.9 
   0.20 0.18821   8.239 169.1569 1.007922 1.15031 6.275 0.15160 0.16821 148.3 
   0.30 0.27508   7.286   92.1840 1.011522 1.22498 5.967 0.15434 0.18233    82.85 
   0.40 0.35635   6.702   94.6500 1.014841 1.29762 5.613 0.16554 0.19234   84.20 
   0.50 0.43155   6.299 161.3508 1.017857 1.36690 5.222 0.18402 0.20010 140.16 
   0.60 0.50041   6.001 770.5875 1.020556 1.43165 4.806 0.20645 0.20645 759.2 
   0.70 0.56283   5.769   90.2592 1.022933 1.49093 4.380 0.21372  0.21182   79.85 
   0.80 0.61893   5.584   44.6118 1.024994 1.54405 3.954 0.22125 0.21646   38.75 
   0.90 0.66893   5.432   28.8255 1.027750 1.61772 3.599 0.22549 0.22056   26.35 
   1.00 0.71317   5.306   21.0948 1.028218 1.63053 3.143 0.23814 0.22423   17.97 
   2.00 0.93597   4.687     6.6234 1.031918 1.73503 0.747 0.39134 0.24835     5.76 



 

As Illustrated in Table 3, the combination of τ = 0.05 and J = −0.05 results in a 
monotonic increase in both Tmx/T0 and β, but an extreme and irregular enhancement of Nux 
with increasing values of Kx0. The evaluation of the coefficients of Eq. (18) at the two peak 
values in Nux, that is at Kx0 = 0.10 and 0.60, results in 

                                               β = 0.2242 + 0.03480 ln{Kx0}                                              (20) 

The predictions of β by Eq. (20) are again somewhat crude and the corresponding ones of 
Nux represent the chaotic behavior only semi-quantitatively, but even that is quite an 
achievement for such a simple expression, and is a strong endorsement of the validity of the 
structure of the analogy. On the other hand, the numerical difference in the coefficients of 
Eqs. (19) and (20) certifies the need for a correlative expression for β that incorporates the 
values of τ and J, even for fixed values of Re, Pr, K0a, Sc, E/RT0, and T0, if the analogy is to 
be predictive in a numerical sense. 

 

Turbulent flow with uniform heating and cooling 
          Table 4 illustrates the variance of β at Kx0 = 0.5 for turbulent flow at Re = 37,640, but 
otherwise the same 8 conditions as for Table 1. The results, however, differ greatly. Not 
only is the numerical variance of β much greater, but the sign is negative for four of the 
conditions. In the quest for less variance and an explanation for the differences relative to 
Table 1, finite-difference computations were carried out by Yu and Churchill6 for 16 
additional conditions, primarily involving greater absolute values of the dimensionless heat 
flux density J, but herein attention is confined to the conditions of Table 6. As can be 
deduced from Eq. (7), the negative values of β correspond t from the attenuation of Nux 
relative to Nuox. The difference in the values of β in Tables 1 and 4 indicates that the 
dependence on Re is not wholly characterized by it’s presence in ξ, at least insofar as one 
condition is in the laminar regime and the other in turbulent regime. This discrepancy might 
have been anticipated because the turbulent transport of energy and species is accounted for 
in Eq. (8) only by virtue of the presence of (kemx/k0)(1−Zmx). 

Table 4. Variance of Coefficient β at Kx0 = 0.50 in Turbulent Flow at Re = 37,640 with Sc = 
0.2, E/R/T0 = 17.815, T0 = 300K and Pr = 0.7,for which Nuox = 107.69  

                                              
                           

Tables 5 and 6, which illustrate the dependence of Nux, β, and other dependent 
variables on Kx0 and which include Nuox as a reference, constitute a counterpart to Tables 2 
and 3. In the turbulent regime, Nuox depends separately on Re, Pr, and a/x rather than on Gz 

   τ      J      −ξ     Zmx      Nux  Tmx/T0 kemx/ k0         β 
 0.01   -0.05  126.47 0.40280 190.069     1.00399 1.07334  0.005346 
-0.01     0.05  126.47 0.38008 251.529  0.99624 0.93495  0.007801 
 0.01   -0.10    63.235 0.40264 478.960 1.00395 1.07256  0.01913 
-0.01     0.10    63.235 0.38023 386.759 0.99628 0.93559  0.01968 
 0.05   -0.05 632.35 0.46001   11.8638 1.02296 1.49033 -0.01587 
-0.05     0.05 632.35 0.34199   22.3052 0.98294 0.73404 -0.01253 
 0.05   -0.10 316.18 0.45981        27.0058 1.02291. 1.49037 -0.01173 
-0.05     0.10 316.18 0.34211   55.3732 0.98274 0.73449 -0.006185 



 

= πRePra/x only. Hence these values of Nuox are specific to the indicated conditions. All 
eight pairs of values of τ and J resulted in one or two peaks in Nux and a non-monotonic 
dependence of β on Kx0. 

Table 5. Selected Characteristics for Uniform Heating in Fully Developed Turbulent Flow 
at Re = 37640 with  Pr = 0.7, Sc = 0.2, Ka0 = 0.096, τ = −0.01, J = 0.05, and ξ = −126.47 

   

  
                                              
Table 6. Selected Characteristics for Uniform Cooling in Fully Developed Turbulent Flow 
at Re= 37640 with Pr = 0.7, Sc = 0.2, Ka0 = 0.096, τ = 0.05, J = −0.05, and ξ = −632.3 
               

Kx0     Zmx Nuxo         Nux    Tm/T0 kemx/k0    - Qx       −β        −β23      Nux23     −β24 Nux24 
 0.01 0.009988 250.95    71.8160 1.000499 1.0089 631.62  0.003949 0.003949 71.82  0.4873   0.813  
 0.02 0.019962 204.35    45.0698 1.000997 1.0179 630.81  0.005602 0.005973 42.86  0.3153   1.022 
 0.05 0.049800 160.54    26.0508 1.002486 1.0452 628.00  0.008221 0.008648 24.96  0.1515   1.670 
 0.10 0.099135 138.12    18.2220 1.004948 1.0917 621.90  0.010580 0.010672 18.09  0.07353   2.955 
 0.20 0.19591 122.26    13.6241 1.009780 1.1883 604.22  0.013201 0.012695 14.10  0.03112   6.173 
 0.50 0.45001 107.69    11.8638 1.022961 1.4790 514.37  0.015703 0.015371 12.09  0.01598  11.68 
 0.60 0.53593 105.39    12.5120 1.026749 1.5906 466.77  0.015903 0.015903 12.51  0.01590  12.51 
 0.70 0.60467 103.57    13.6226 1.030178 1.6852 421.27  0.015673 0.016353 13.13  0.01584  13.50 
 0.80 0.66598 102.07    15.2455 1.033236 1.7737 374.63  0.015202 0.016742 14.04  0.01550  14.99 
 0.90 0.71989 100.82    17.4871 1.035923 1.8490 328.54  0.014505 0.017087 15.24  0.01476  17.23 
 1.00 0.76667   99.75    20.5211 1.038254 1.9278 284.44  0.013573 0.017394 16.77  0.01357  20.52 
 2.00 0.96989   93.87  930.543 1.048336 2.2737 43.291 −0.02077 0.019418 51.00 -0.02077 931.42 
 5.00 0.99996   89.49    89.6433 1.049603 2.3208   0.059 −0.02883 0.022093 89.38 -0.07470   88.18 

 

The behavior for τ = -0.01 and J = 0.05 is summarized in Table 5. Since β goes 
through a minimum as Kx0 increases, Eq. (18) is obviously inadequate, and the following 
expression is proposed as an alternative: 

  Kx0    Zmx Nuxo      Nux Tmx/T0 kemx/k0    - Qx       β      β22 Nux22 

0.010 0.009932 250.95 2032.96 0.99990 0.99824 124.99 0.007012 0.007012 2033 
0.020 0.019743 204.35 3486.72 0.99900 0.99652 123.54 0.007620 0.007688 4070 
0.030 0.029435 182.70 1079.43 0.99971 0.99481 122.11 0.006803 0.007474 2092 
0.040 0.039011 169.56   684.72 0.99961 0.99311 120.68 0.006234 0.007098 1183 
0.050 0.048473 160.53   522.50 0.99952 0.99147 119.31 0.005806 0.006705   802.7 
0.060 0.057823 153.86   434.07 0.99942 0.98983 117.95 0.005473 0.006336   608.9 
0.070 0.067062 148.67   378.49 0.99934 0.98821 116.60 0.005208 0.006001   495.1 
0.080 0.076193 144.49   340.41 0.99924 0.98662 115.27 0.004993 0.005704   421.9 
0.090 0.085218 141.03   312.79 0.99922 0.98617 114.09 0.004813 0.005442   372.0 
0.10 0.094111 138.11   291.98   0.99907 0.98350 112.68 0.004677 0.005216   335.0 
0.20 0.17785 122.26   215.78 0.99824 0.96903 100.76 0.004301 0.004301   215.8 
0.30 0.25268 115.12   207.80 0.99750 0.95628   90.38 0.004935 0.004876   218.6 
0.40 0.31977 110.75   221.38 0.99683 0.94499   81.30 0.006147 0.006262   226.6 
0.50 0.38009 107.69   251.53   0.99624 0.93495   73.30 0.007801 0.008164   262.4 
0.60 0.43447 105.39   302.73 0.99570 0.92600   66.23 0.009842 0.010428   340.7 
0.70 0.48358 103.57   389.83 0.99522 0.91799   59.96 0.012248 0.012959   464.2 
0.80 0.52804 102.07   555.27 0.99478 0.91080   54.37 0.015013 0.015698   596.4 
0.90 0.56834 100.82   966.35 0.99439 0.90434   49.37 0.018142 0.018604 1237  
1.00 0.60492   99.75 3539.98  0.99410 0.89853   44.90 0.021646 0.021646 3537 
2.00 0.83281   93.87   180.61   0.99183 0.86451   19.26   0.024937 0.056405     94.0  
5.00 0.98596   89.49     93.59 0.99054 0.84348   1.497 0.029258 0.176905   121.7 
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Eq. (21) was formulated to result in dβ/dKx0 = 0 at Kx0 = Kx0c, that is at the minimum in β, 
and presumably in Nux as well, and, by virtue of the squared term, to accommodate some 
deviation from the semi-logarithmic dependence. The values of A, B, and C were evaluated 
from the calculated values of β for Kx0 = 0.01, 0.2 and 1.0, and Kx0c was taken to be 0.2, 
resulting in 

                         β = −0.01971 −0.009201 { }
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The accuracy of the predictions of β by Eq. (22) is seen in Table 5 to be only fair, but the 
resulting predictions of Nux are perhaps, in consideration of the erratic behavior, of 
acceptable accuracy. 

For τ = 0.05 and J = −0.05, as shown in Table 6, β is negative for Kx0 ≤ 1.0 by virtue 
of Nux  ≤ Nux0, and goes through a maximum in absolute value at Kx0 = 0.60. On the other 
hand, Nux goes through a maximum at Kx0 = 2.0. The behavior of β for 0.01 ≤ Kx0 ≤ 0.60 
may be represented reasonably well by the following interpolative expression: 
                                  −β = 0.01739 + 0.02919 ln{Kx0}                                                      (23) 
The corresponding values of Nux in that range of K0x are seen to be of acceptable accuracy. 
On the other hand the values of β for 0.6 ≤ K0x ≤  1.0 are well represented by the following 
expression based on the values of K0x at 0.60, 1.0, and 2.0, and the location of the minimum 
at 0.60: 

                          −β = 0.1519 + 0.09 { }
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The predictions of Nux by Eq. (24), including the peak value, are seen to be almost 
exact agreement with the values computed by finite–differences. A correlating equation for 
all values of Kx0 could readily be constructed either by a combination of Eqs. (23) and (24) 
or by an alternative more complex expression. However, such a construction has very 
limited utility because it merely reproduces the computed values of β and Nux for a 
particular set of conditions and has no generality. 
 
Uniform wall-temperature 

The values of β for uniform wall-temperatures were calculated from Eq. (16) using 
the values of Nux, Zmx, and Tmx/T0  computed by Yu and Churchill7. Values for Kx0 = 0.50 are 
listed in Table 7 for a laminar flow and in Table 8 for a turbulent flow. The values of β for 
are relatively invariant with respect to τ in each regime of flow, but vary strongly with the 
chosen values of Tw/T0. In laminar flow, the Nusselt number is attenuated slightly for Tw/T0 
= 1.0 and strongly for both higher and lower ratios. In turbulent flow, the Nusselt number is 
enhanced greatly for Tw/T0 = 1.0 and slightly for other ratios. Anomalous behavior, 
including peak values in Nux did not occur for any of the chosen conditions. The computed 
values of β vary monotonically with Kx0 and the behavior in each case could be represented 
by Eq. (18) but this was not done because a supplementary correlation for Tmx/T0 would be 
required to predict Nux. 

 



 

Table 7. Variance of β at Kx0 = 0.50 with τ and Tw/T0 Laminar Flow at Re = 400 
 with Pr = 0.7, Sc = 0.2, E/R/T0 = 17.815, T0 = 300K for which Nuox = 5.0383, 

 

 
Table 8. Variance of β at Kx0 =0.50 with τ and Tw/T0 Turbulent Flow at Re = 37,640 with Pr 
= 0.7, for which Nuox = 103.51, Sc = 0.2, E/R/T0 = 17.815, and T0 = 300K 
 

 
 

 

 

 

 

 

 

Interpretation 
The objective of the work reported here was to devise an analogy between chemical 

reaction and convective heat transfer. That objective has been accomplished but the results 
appear to open as many doors as they close. This section is focussed on these unresolved 
issues in two categories. First, the proposed analogy is compared with the classical ones for 
momentum and heat transfer. Second, the utility of the new analogy is examined vis-à-vis 
the finite-difference solution of the partial differential equations of conservation. 

 

Comparison of the new analogy for reaction and convection with the classical 
analogies for momentum and heat transfer 

The classical analogies for momentum and heat transfer have played a significant 
role in practice in that they have provided models for both correlation and prediction. The 
analogy of Colburn3 is still widely used despite its numerical and functional inaccuracy. The 
derivation of the analogy of Reichardt4 provides great functional insight, and its recent 

τ Tw/T0 Zmx Nux Tmx/T0 kemx/ k0 Jx −ξx β 

0.01 1.00 0.38492 13.289 1.00268 1.04871 −0.01779 3.7774 0.25481 
0.05 1.00 0.41901 12.903 1.01476 1.29568 −0.09519 3.5298 0.22938 

-0.01 1.00 0.37040 13.467 0.99744 0.99511 0.26820 3.8808 0.26820 

-0.05 1.00 0.34521 13.799 0.98819 0.80821 0.08149 4.1231 0.29096 

0.01 0.90 0.27955 5.1173 0.97842 0.67506 −0.20065 0.3349 0.09483 
0.05 0.90 0.30392 5.4038 0.98852 0.81312 −0.23918 1.4048 0.08509 
-0.01 1.10 0.51921 5.5473 1.02089 1.43981 0.21942 0.3062 0.43285 
-0.05 1.10 0.48885 7.2756 1.01203 1.19713 0.32666 1.0286 0.48857 

    τ Tw/T0     Zmx      Nux  Tmx/T0 kemx/ k0       Jx    −ξx      β 
  0.01  1.00 0.40237  157.529 1.00385 1.07076 −0.30344 20.840 0.02571 
−0.01  1.00 0.38047  158.829    0.99636 0.93700   0.28902 21.879 0.02742 
  0.05  1.00 0.45636  154.501 1.02189 1.46470 −1.69117 18.696 0.02217 
−0.05  1.00 0.34399  161.156    0.98358 0.74267   1.32347 23.890 0.03073 
  0.01  0.90  0.38500    104.261 0.99902 0.99275 −1.22497 5.1622 0.00971 
  0.05  0.90  0.43632  106.955  1.01647 1.33457 −6.22855 5.0762 0.00843 
−0.01  1.10 0.40254  107.622 1.00095 1.01708   5.32988 1.1864 0.05297 
−0.05  1.10 0.36437  121.204    0.98776 0.80197   6.80176 4.6484 0.06160 



 

reformulation by Churchill and Zajic6 is so nearly exact numerically and functionally that it 
may remain competitive with numerical simulations as they become standard practice. 

The new analogy resembles the classical ones superficially in that the Nusselt 
number is predicted on the basis of the behavior of another quantity – the mixed-mean 
conversion in the case of chemical reaction and the friction factor in the case of momentum 
transfer. The similarity largely ends there. To begin with, the classical analogies relate the 
transport of two different quantities, momentum and energy, whereas the new one relates a 
generative process to one of transport. Mathematically, two vectorial quantities are related 
in the classical analogies but a vectorial quantity and a scalar quantity in the new one. 
Moreover, the classical analogies relate two fully developed processes whereas the new 
analogy relates two developing processes. The classical analogies apply only for turbulent 
flow while the new analogy is applicable for both laminar and turbulent flow. The function 
γ in the modified Reichardt analogy represents a well-defined integral but the coefficient β 
in the new analogy is an unknown function of several variables. Some insight is gained by 
examining the sources of these differences. 

Because of the fundamental differences mentioned in the previous paragraph, the 
derivation of the new analogy followed a completely different procedure than that utilized 
for any of the classical ones. First, an exact solution for heat transfer was derived for a very, 
very idealized case of fully developed convection and reaction. That solution was then 
adapted for devolving reaction and developing convection by replacing the theoretical 
coefficient of linking with an arbitrary one, and introducing an arbitrary expression for the 
effective mean value of the reaction-rate constant with respect to both radius and axial 
distance at each value of Kox. 

The  analogy for uniform heating was adapted speculatively for a uniform wall-
temperature simply by replacing the specified heat flux density by the (unknown) local 
value, and then, by virtue of the definition of the local Nusselt number, replacing that 
unknown quantity by another unknown quantity, namely the mixed-mean temperature ratio, 
Tmx/T0.  The result is inferior to that for a uniform heat flux in the sense of numerical 
predictions because it includes this ratio as well as the mixed-mean conversion and the 
arbitrary coefficient, β. However, it appears to have similar merit in a structural sense. 

Chemical reaction and convection in tubular flow are ordinarily developing 
processes whereas convection in the absence of chemical reaction and in a long tube with 
either a uniform heat flux density or a uniform wall-temperature approaches a fully 
developed dimensionless state and may be considered to be fully developed throughout to a 
good degree of approximation. Hence, that difference in the new and classical analogies in 
that respect simply conforms to practice. The coefficient β in the new analogy is a function 
of the dimensionless distance from the entrance because the reaction and convection are 
progressing, whereas the friction factor f in the classical analogies is not, because the flow 
and the convection are presumed to be fully developed. The coefficient β is also a function 
of the thermicity and the heat flux density because the temperature and the rate of reaction 
are varying with distance from the entrance. 

An analogy has apparently not been formulated between momentum and convective 
heat transfer in developing convection in fully developed laminar flow because the classical 
solutions of Graetz8 in series form are a function only of wc/λx = (πa/2x)RePr and the 



 

thermal boundary condition, and are independent of the friction factor as a separate variable. 
Of course, 16/f could be substituted for Re to give the appearance of an analogy. For fully 
developed convection, these solutions of Graetz reduce to a fixed value for Nu [in the case 
of a uniform heat flux density to the value of 48/11of Eq. (5)] and remain independent of the 
friction factor. 

The derivation of the analogy and the test computations are for a first-order 
equimolar irreversible reaction. These are unnecessarily severe restrictions in that a pseudo 
first-order rate mechanism, together with an effective frequency factor, an effective energy 
of activation, an overall heat of reaction, and a mean molecular weight, could be utilized to 
approximate the net effect of multiple reactions on the Nusselt number. 

In summary, the new analogy differs fundamentally from the classical ones in that it 
links two dissimilar processes, and has a much broader scope, encompassing developing as 
well as fully developed convection and reaction in both laminar and turbulent flow. The 
price of that difference and of the broader scope is a dependence of the coefficient β on 
many variables as compared to the dependence of γ in the modified analogy of Reichardt on 
the Reynolds number and mode of heating alone. Whereas the latter analogy of Reichardt, 
together with numerically computed values of γ, provides almost exact numerical 
predictions of the Nusselt number for fully developed convection in fully developed 
turbulent flow for all Re and Pr and both modes of heat transfer, the predictive power of the 
new analogy is, as illustrated in Tables 2, 3, 4, and 6, limited to one case at a time. 

 

An Explanation for the Enhancement and Attenuation 

 
The analogy in the generic form of Eq. (4), as well as in the detailed form of Eqs. 

(12) and (16), provides a representation for the enhancement and the attenuation of the 
Nusselt number, including the extreme and chaotic values. For example the extreme 
enhancement is a result of Qx β → 0, and the chaotic behavior a serendipitous result of the 
independent variations of Qx and β. However, this does not constitute a physical 
explanation. Although Eq. (5) provides essentially exact values of Qx in terms of the 
specified variables, the dependence of β on these same quantities has yet to be formulated 
either analytically or computationally. 

A physical explanation was conjectured on the basis of the modification of the radial 
temperature distribution by the heat of reaction, whose generation depends on the local 
temperature and composition, which in turn depend critically on the velocity distribution, as 
well as on the Prandtl and Schmidt numbers. The preferential generation of the heat of 
reaction near the wall shifts the mixed-mean temperature toward the wall, reducing the 
mean distance for the transfer of this energy to the wall as compared to the mean distance in 
the case of pure convection and thereby enhancing Nux. Attenuation is conversely a result of 
preferential generation of the heat of reaction near the centerline. The temperature 
distributions computed by Yu and Churchill7 for uniform heating with and without reaction 
confirm this conjecture for both laminar and turbulent flow. 

 

 



 

The Role of Experimentation 

 
Experimentation is the ultimate standard for the evaluation of the accuracy of both 

simulations and theoretical expressions such as analogies. However, heat transfer and 
reaction engineering are currently out of favor as subjects of research in the laboratory. The 
only direct measurements of enhancement due to a reaction that were identified are those 
Edwards and Ferguson9 for the gas-phase decomposition of oxone in turbulent flow through 
a uniformly heated glass tube.  Their observations of enhancements of up to 27% are 
consistent with the predictions of Eq. (12), but insufficient information is given to make 
quantitative comparisons. 

 

The Role of the Proposed Analogy between Chemical Reaction and Convection 
 

In consideration of its limitations with respect to numerical predictions and the 
potential of finite-difference solutions, what role, if any, does the analogy derived herein 
serve? 

This analogy has already made a unique and invaluable contribution by providing 
the first quantitative explanation for the chaotic and extreme enhancement and attenuation 
of convection by an energetic reaction. An explanation of this anomalous behavior would 
not be easy to discern from the numerical results of simulation and/or experimentation, 
however extensive. 

A further unique contribution of the new analogy has been to identify the variables 
and parameters that influence the combined process of reaction and convection, as for 
example, those that make up Eqs. (12) and (16). Although the indicated functional 
dependence of Nux on these several dimensionless groupings may not be exact because of 
the speculations and approximations utilized in the derivations, even first-order prediction 
of their effects is invaluable and provides a guide to simulation and experimentation. 

Another important but fuzzy contribution is the numerical prediction of Nux as a 
function of Zmx. The explicit empiricism within Eqs. (12) and (16) is limited to the 
coefficient β, but, as contrasted to the arbitrary functions such as δ+  and γ in the analogies 
for momentum and heat transfer, a generalized and comprehensive predictive expression or 
correlating equation for that coefficient has not as yet been developed. The variation of β 
with the dimensionless distance through the reactor, Kx0, was found to be regular and 
moderate, and to be represented successfully by a linear and/or a quadratic expression in 
ln{Kx0} even for conditions for which Nux  varies chaotically and grossly. That is a 
significant, if incomplete, achievement in that the empirical coefficients in these correlating 
equations are unknown functions of the thermicity (τ = qM/cMT0), the dimensionless heat 
flux flux density (J =jwa/λT0) or the wall-temperature ratio (Tw/T0), the regime of flow 
(laminar or turbulent), and possibly some of the factors that make up ξ, ξx, and ζ. This 
uncertainty is a consequence of the speculative derivation of the new analogy and is a direct 
counterpart of the uncertainty with respect to the dependence on Pr in the classical 
analogies. 



 

 

Summary and Conclusions 

 
A relationship between the mixed-mean conversion and the Nusselt number has 

been derived for a homogeneous energetic chemical reaction in tubular flow with 
compensatory heat exchange. 

This relationship can be interpreted as an analogy in the sense of the well-known 
ones between momentum and heat transfer. 

The new analogy  has a broader scope than the classical ones in that it encompasses 
devolving reaction and developing convection and both laminar and turbulent flow, but it is 
inferior in terms of absolute predictions because, as a consequence of the many parameters 
associated with a chemical conversion and heat exchange, a generalized expression has yet 
to be developed for the empirical coefficient β. Progress in this respect is currently limited 
to the observation of a limited variance for different thermal conditions and a nearly semi-
logarithmic dependence on distance through the reactor/exchanger. 

Although the derivation herein is based on a single, irreversible, equimolar reaction 
the new analogy is applicable as an approximation for any reactive process in terms of an 
effective rate constant, heat of reaction, and mean density. 

The principal merits of the new analogy are the explanation of the chaotic and gross 
variation of the Nusselt number and the quantitative prediction of that behavior for any 
single condition..  

The postulate of plug flow, which is made in many books on reaction engineering, 
precludes the formulation of an analogy as well as the calculation of the enhancement and 
attenuation of the heat transfer coefficient that it explains.  
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