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 Numerous scientific and industrial situations require thermodynamic properties of gas 
mixtures containing water.  Examples include the development of humidity standards (where 
the dominant correction is the nonideality of water in the vapor phase) and design calculations 
for the utilization of synthesis and combustion gases in advanced power-generation cycles.  In 
many of these cases, the conditions of temperature and pressure are such that the appropriate 
level of description is that of the second virial coefficient, the first-order correction to the ideal-
gas law. 
 
 Unfortunately, the experimental measurement of cross second virial coefficients for 
water/gas binaries is very difficult, due to adsorption of water on apparatus and/or difficulty in 
measuring small concentrations of water in the vapor phase.  As a result, the available 
experimental data have large uncertainties and cover an insufficient temperature range for 
many applications. 
 
 Our approach uses ab initio computational quantum chemistry to develop 
quantitatively accurate intermolecular potential-energy surfaces for the binary systems of 
interest.  Because the computational expense for a sufficiently high-level calculation of the 
entire surface would be prohibitive, a two-part approach is used.  First, the full surface is 
calculated at a “medium” level of theory (such as MP2).  Then, a small number of high-level 
calculations are used to scale the surface (or, in a recent refinement, each of several 
independent contributions to the surface) to a final result corresponding to a high level of 
theory.   
 
 Once the potential-energy surface is obtained, the second virial coefficient can be 
computed rigorously (with quantum corrections) from statistical mechanics; this calculation 
covers all temperatures of interest in contrast to the limited range of most experimental 
studies.  Because we can make a reasonable estimate of the uncertainty in our pair potentials, 
we can propagate that into uncertainties in our calculated second virial coefficients. 
 



 This approach was first applied to water with the first three noble gases [1,2].  For 
water-argon, the only system for which significant experimental data are available, our results 
are consistent with the experimental data but have substantially smaller uncertainties.  Similar 
results have been obtained for water with hydrogen [3], a system of interest for fuel cells, and 
for water with the air components nitrogen [4] and oxygen [5]. 
 
 Our results for water with argon, nitrogen, and oxygen can be combined to produce an 
effective second virial coefficient for water with “air.”  This is a key quantity for humidity 
standards, and it has been the subject of painstaking experimental work [6-8].  Preliminary 
calculations [9] indicate that our results are consistent with the existing high-accuracy data, but 
cover a much wider temperature range than the experimental data. 
 
 Efforts are underway on the water/CO pair; carbon monoxide is a major component of 
the synthesis gas in the integrated gasification combined cycle (IGCC) process for “clean coal” 
power generation.  In addition to the properties of the synthesis gas itself, there is interest in 
the equilibrium water-vapor content of the gas after it is “quenched” with liquid water; current 
engineering models do not seem to give a reliable description of this problem.  In the near 
future, we will study the water/CO2 system in order to improve the knowledge of the properties 
of combustion gases in power cycles. 
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