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Abstract

Breakage kernels using power-law rate kernels and self-similar daughter distributions exhibit similarity
solutions. The authors have exploited this to develop a matrix-inversion technique for extracting model
parameters from the moments of measured product distributions. By specifying the daughter distribution
parameters and the exponent in the power law, a mapping of daughter distribution moments into product
distribution moments was produced. Regression resulted in a set of linear equations giving the product
moments as functions of the daughter moments and the power-law rate exponent. Given a set of measured
product moments and a measured value of the power-law rate exponent, the daughter moments are
obtained, and from them, the daughter distribution parameters.

In this paper, the possible sources of error in the resulting models are evaluated including (a) potentially ill-
conditioned matrices in solution of the linear equation set and (b) regression error propagation. A third
source of error, mismatch between the model and the actual physics, can only be assessed when one is
confident that the numerical errors have been minimized. These analyses lead to an alternative method
proposal. A program for developing this alternative more fully is given as the logical next step.

Introduction

The development starts from the population balance equation shown below:
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where the breakage rate is power-law in size and the daughters are self-similar. The source term describes
breakage of parent particles of volume & into daughter particles of volume V. The rate is first order in the
particle concentration (n(®),®P>V), and proportional to the product of a size-dependent rate kernel (I'(P))
and a conditional daughter distribution (b(V;®)) describing the fraction of daughters that are size V from a
parent of size ®. In power-law breakage the size-dependent rate kernel is assumed to take the form
I['(V)=T,V", with 1 the order of the breakage rate in particle size. For self-similar daughters, the self-
similar part of the daughter distribution (B(z)) only depends on the ratio of daughter-to-parent size (z). This
function B is divided by the parent size to assure mass conservation when applying b. The sink term gives
the breakage rate of particles of size V into all possible daughters. The parameters of the model are I',, 1,
and any parameters needed to describe .

In previous papers ([1], [2]), the authors proceed by:

(a) developing moment models in both physical and scaled spaces,

(b) showing that they have similarity solutions,

(c) developing a recursion expression for the scaled moments of the similarity solution in terms of the rate
exponent 1 and certain moments of the daughter distribution, but requiring the n-order moment of the
similarity solution as a seed, and

(d) developing an analytical expression for the n-order moment of the similarity solution in the cases
where M is a reciprocal integer.
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Therefore, if a daughter distribution and its parameters are specified as well as the rate exponent 1, the
moments of the similarity solution can be recovered for any reciprocal integer value of 1. These results are
summarized below:

Moment definition: M = j:Vj n(V)dv
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Daughter moment definition: b, = _E 7/ B(2)dz
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It was shown that at the similarity solution, the rate exponent 1 and rate coefficient I', could be extracted
from the slope and intercept of a In-In plot of measured mean particle size versus time. What remains is to
discover a means for daughter distribution extraction from size distribution trajectory data.

A very general daughter distribution is based on the Hill-Ng power-law product distribution ([3])
(generalized into a beta distribution by the authors ([4])). This has been derived from a specific joint

multivariate distribution for p daughters (with p > 2) as described in [3]. In multi-term form, this becomes:
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where B in the denominator is the beta function. Each term has three parameters: its weight, w;, and two
exponents ¢; and r;. The mass balance constraint requires the sum of the term weights to be unity, so for an
n-term distribution there are only n-1 independent weights. The number of daughters corresponding to each
term (p;) is related to the two exponents as shown above. This means that only one of the exponents (say
g;) is independent of the number of daughters. The independent exponent can be thought of as a sharpness
parameter. As discussed in [1] and [2], small values of g; correspond to mechanisms that generate
daughters of disparate size (erosion, or fracture with fines) while large values represent mechanisms
generating daughters of near equal size (cleavage or fragmentation). As g; tends to infinity, the daughters
approach identical size.

The moments of this daughter distribution are given by:
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In [1], a single term daughter distribution was studied (i.e., wi=1, q=¢, p1=p). The analytical similarity
solution given above was used to generate a large data set of product moments (y;) as a function of 1, p and
q. It was observed that for small ¢, the product moments were large and nearly independent of p while for
large g they were small and nearly independent of g. It was hoped that a single moment (say ) could be
used to discriminate regimes, and that regime-dependent relations could be developed expressing that
moment in terms of 1 and either p or g, with the other parameter arbitrarily set. Thus, at small 3, g would
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be set to 10 while at small %, p would be set to 2. This program was carried out as described in [1], and it
was shown that a forward solution of the population balance problem using the quadrature method of
moments (see [5] for a discussion of this method) reproduced the size and 2™ moment trajectories from
which the model parameters were derived. Unfortunately, when the product distributions were
reconstructed (following the method of the authors given in [6], [7]), the reconstructed distributions were
not in good agreement with the data. It was concluded that greater detail was needed to describe the
daughter distribution in order to capture the full system behavior.

In [2], the daughter distribution was expanded to a two-term form where the 1* term was of Peterson ([8])
form (r,=1) and the 2™ term was of the general form:
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The form of the similarity solution suggested that the following relationship between the daughter
distribution moments and the similarity solution moments would be a good fit:
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Again, a large set of values was generated using the analytical solution for reciprocal integer 1. The
coefficients in equations for the 1/3, 4/3, 5/3 and 2™ moments were obtained by multilinear regression. The
resulting correlation coefficients were near unity in all cases, indicating excellent fits.

After first assuring the self-similarity had been reached, experimental similarity solution moments were
obtained by fitting cumulative mass data to an expansion of the distribution function as a two-term
modified gamma distribution as described in [1] and [2]. The values of I', and 1 were obtained by the
appropriate In-In plot of the mean size trajectory after reaching self-similarity. The daughter distribution
moments in the above equation were then obtained by matrix inversion. The parameters of the daughter
distribution were found via an interactive Newton-Raphson procedure. This completed solution of the
inverse problem.

The matrix inversion process may be described as:
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Reference [2] also describes initialization and solution of the forward problem by the quadrature method of
moments and the reconstruction of the predicted product distributions.

The results with the more complex 4-parameter daughter distribution were improved. Again, the data used
in solving the inverse problem (mean size time trajectory and product (similarity solution) moment
trajectories for the 1/3, 4/3, 5/3 and 2™ scaled moments) were well represented by the model parameters.
The reconstructed distributions were much closer to those measured. Five data sets were given the full
treatment of inverse problem solution followed by working the forward problem and reconstructing
distributions from the model-predicted moments.

There were five types of error evaluated to describe how well or poorly the technique worked. The first of
these was the root-mean-square error in representing the cumulative mass data points at self-similarity by
the two-term modified gamma distribution. These ranged from 0.21% to 3.02%. The next was the error in
representing the daughter moments obtained from the regression by a set of daughter distribution
parameters. In only one case were all four parameters obtainable exactly with no error. In all other cases,
only a subset of the daughter moments could be represented exactly with the remainder chosen to minimize
the root-mean-square error. This error was generally less than 10%, but in one case, was as large as 70%.
The next type of error was a comparison of the moments predicted by the forward problem solution
compared to the data. This root-mean-square error ranged from 5-20% as did the moments calculated from
the reconstructed two-term modified gamma distributions as compared to the data. Finally, the root-mean-
square error for direct comparison of the reconstructed distributions to the data points ranged from 0.90 to
3.63%.

These different types of error were not necessarily correlated. There was one case that had the smallest
error of every type. However, the case with large error in representing the daughter moments was mid-
range in the error between the forward solution moments and those obtained from the data. Then again, the
reconstruction had one of the two highest errors in comparison to the individual data points.

The most disappointing aspect of this is the inability to retrieve daughter moments in all cases that can be
well represented by a set of daughter distribution parameters. It was this observation that motivated the

work described in the rest of this paper.

Singular Value Decomposition Analysis

One possible source of error in this technique is the possibility that the A matrix being inverted is ill
conditioned. This can be evaluated by obtaining the eigenvalues of the square matrix formed from A"A,
and computing its condition number as the square root of the ratio of largest to smallest non-zero
eigenvalues. Large values of the condition number indicate ill-conditioning and suggest that the dimension
is too large for reliable solution by inversion. One can eliminate the smallest eigenvalue and calculate the
condition number for a matrix reduced in dimension by one row and column. This process can be repeated
until the condition number is sufficiently small to reliably solve the system. In this case, the dimension of
such a reduced matrix indicates the maximum number of daughter moments that can be reliably obtained.
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Since the coefficients are functions of 1, Figure 1 shows the eigenvalues of ATA as a function of 1. Figure
2 gives the condition number of the full 4x4, a reduced 3x3 and a further reduced 2x2 matrix. The values at
1 for the five data sets are shown as points in the graphs.
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Figure 1 — Eigenvalues of ATA
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Figure 2 — Condition Number of A

What these results show is that the full 4x4 matrix is ill-conditioned, but that the reduced 3x3 matrix is
suitably conditioned to allow solution. This means that successfully extracting 4 daughter distribution
moments by the matrix inversion is an iffy proposition and gives some clue as to why it was generally not
possible to fully represent all 4 daughter moments with daughter distribution parameters.
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Propagation of Regression Error

Another source of error is propagation of errors in the regression itself. In general, correlation coefficients
were so close to unity that one would not expect large errors to be present. But the relations that were fit
cover many decades of values for the similarity solution moments so even small error bands relative to the
slope of the correlation line can translate into large relative errors in the moment values themselves. To test
this notion, several cases were evaluated in which the true values of both the similarity solution and the
daughter distribution moments were known. The table below shows the results:

System

Specification Case 1 Case 2 Case 3

n 3333 .3333 1

qi .01 .005 1

w 5 2 1

7 3 1000 1

)2 4 15000 2

True Values

In(p-1) 3.941582 8.058264 0.000000
In(b,5-1) 0.487362 3.857011 -0.693147
In(b,5—1) —0.728424 1.023389 —1.609438
In(bys-1) -1.316673 —0.965268 —1.945910
In(y5—1) -2.206716 —3.244017 -0.113192
In(y,5—1) 1.698808 3.993498 0.174490
In(ys;3—1) 3.651734 8.674401 0.408511
In(y,-1) 5.811161 13.742609 0.693147
Values via Matrix Inversion

In(p-1) 3.862251 8.113482 0.293293
In(b,5—1) 0.390977 3.891068 —0.456786
In(by5—1) —0.822750 1.080657 —1.373776
In(bys—1) -1.413516 —0.925507 -1.720174
€ms(%) vs. true values 9.6 4.9 28.4
Values via Newton-Raphson

q1 .006867 .006918 1.000

w .691273 225308 1.000

r 1.387983 866.766 1.297

)2 4781224 14324.5 2.341
€ms(%) in representing fit 0.0 0.0 1.8

This table shows that even when all the daughter moments obtained from the matrix inversion can be
represented exactly by daughter distribution parameters, the error propagation from the regression through
the matrix inversion can be significant, and even as little as 1.8% error in representing the matrix inversion
solution can correspond to 30% error against the true daughter moments. This argues that another approach
is necessary, one that avoids regression entirely if possible.

Interpolation of the Analytical Solution

Prior to abandoning regression entirely, a search for relations that might incur reduced regression error was
begun. The analytical expression for the similarity solution was the point of departure. In the course of
manipulating this expression, it was realized that one could develop a revised expression for 1 a reciprocal
integer as follows:



R. B. Diemer Jr. and J. H. Olson.

Y, 1
[Tom : 1<is<—
m=j 77
D = Vi rglim)m = 1 ]:l for p=—
n
Jj—1 1
pmn ;o —<J
m:%’ 77
with:
k-1
=(p-1
Pr (p )1_bk

Everything on the LHS can be calculated directly from measurements of size and distribution trajectories.
Everything on the RHS is a function of the daughter distribution parameters. If the value of 1 obtained
from the data is a reciprocal integer, then the relation is exact as stated. The issue becomes what to do
when 1 lies between reciprocal integers. Noting that:

one can rearrange the above to give:
— Jn-1
Vin= ¢jn¢n

If one treats these expressions as functions of 1, then one can imagine finding their values by interpolating
the known solutions at the reciprocal integer points. An alternative attack on the inverse problem would
then be to search a space of daughter distribution parameters until one minimized the error in representing a
set of ¥, values. One exchanges the interpolation error for the regression error in the previous approach
and hopes that it turns out to be smaller.

Figure 3 shows a graph of In ¢;, versus 1/m showing that in this space, the relations are nearly linear. This
suggests that polynomial interpolation should do a reasonably good job of representing the similarity
solution in these coordinates.

The following program has been developed to characterize the error associated with this approach. One
needs some kind of standard for assessing how close the interpolation comes to the “true” value. The
forward solution of a moment model offers one possibility. So, first it must be validated against the known
analytical solutions. In the model, the restriction of the 1% term of the daughter distribution to be Peterson
type has been relaxed so that both terms are of the general power-law product type. Thus, there are 5
daughter distribution parameters. In validating the forward solution, there are several questions to be
asked:

e [s the error sensitive to the moments that are the “subjects” of the quadrature method? The subject
moments are those upon which the model equations are based. These should include the targets to be
used for obtaining daughter parameters, i.e., orders that are multiples of 1, but will probably include
additional moments. How should these be chosen?

e [s the error sensitive to method? One could use an alternative method also discussed in [5] known as
MOMIC or in this case, MOMEC (Method of Moments with Extrapolative Closure) rather than
QMOM (Quadrature Method of Moments).
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A set of cases for various reciprocal integer values of 1 and various sets of daughter parameters must be
calculated. Provided one can arrive at a rationale for choosing the closure method and the selection of
“subject” moments such that the forward solution predicts the known values to within small error, the next
step is to validate the interpolation.

To validate the interpolation, the best rendering of the forward solution would be used to calculate for a set
of n that lie between the reciprocal integers so that comparison to the interpolation can be made. As a final
test, raw data sets should be developed from known solutions but with random error superimposed to test
the ability of the method to represent the data to within the tolerance of the error in the data itself.

Execution of this program is now underway.
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Figure 3 — Similarity Solution in Nearly Linear Space
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