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Introduction 
For emissions control of multicomponent exhaust gas streams, catalytic converters have to perform 

three functions: the catalytic oxidation of carbon monoxide to carbon dioxide, the destruction of 

Volatile Organic Carbon compounds (VOC’s), and NOx abatement. State-of-art catalysts for CO 

oxidation are based on CuMn2O4 (hopcalite), for VOC combustion on Pt/alumina, and for DeNOx 

either supported noble metals (Rh, Pt, Pd) or redox metals (V, Mn) are commonly employed. 

Extensive research has focused on the improvement of catalytic activity at low temperatures. We 

have applied high-throughput and combinatorial approaches to the discovery of more efficient 

catalysts for low temperature CO oxidation, VOC combustion and DeNOx [1-5]. The screening 

approach was based on a hierarchy of qualitative and semi-quantitative primary screens for the 

discovery of hits, and quantitative secondary screens for hit confirmation, lead optimization and scale-

up. Parallel IR thermography and fast serial scanning mass spectrometry were the primary screens 

for CO oxidation and SCR-DeNOx, respectively, using wafer-formatted libraries of 256 catalysts with 

CO/O2/N2 and sulfur- and water-free NH3/NO/O2/Ar model feeds. Multi-channel fixed bed reactors 

equipped with imaging reflection FTIR spectroscopy or GC were used for scale up as well as VOC 

screening using propylene/O2/N2 model feed.   

 

CO oxidation and VOC combustion over Ru-based  catalyst systems 
Pt-free Ru-Co-Ce mixed oxide ternaries as well as ceria supported Ru-Co have been discovered and 

scaled up for further optimization [1-2]. The reactor consisted of 8 parallel fixed-beds with a flow-

distributed feed, in which a stream selection valve selected one of the reactor effluents for rapid serial 

GC analysis.  The feed consisted of 1% CO and/or 0.15% propylene in CDA at a space velocity of 

25,000 1/hr.  The reactor temperature was increased from 40oC to 200oC in 10-20oC increments in 

order to produce light-off curves for CO oxidation and propylene combustion both as pure 

components in CDA as well as a mixed CO-propylene-CDA feed.  GC analysis used a TCD for 

quantitative detection of CO, CO2, H2O, propylene and O2.  Light off curves could be produced for the 

CO oxidation and VOC combustion analysis of all 8 candidate catalysts in ~12 hours, via automated 

Symyx’ Impressionist® software control. Figure 1 shows representative light off curves for CO 



oxidation. Ru-Co on ceria and active carbon are more active than the Pt/Al2O3 benchmark whereas 

Ru-Co on SnO2 lights off at comparable temperature. 

 

Figure 1: Light off curves (CO conversion versus reaction temperature) for Ru-Co leads in 8x1 multi 

channel fixed bed reactor.  
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We have then investigated the effect of yttrium doping. A library of Ru-Co-Ce-Y quaternaries has 

been synthesized by the modified Pechini method using Ce (III) nitrate, Co (II) nitrate, Y (III) nitrate 

and Ru (III) nitrosyl nitrate as precursors in aqueous glyoxylic acid as dispersant and calcining the 

solution according to the heat up protocol: 60C/2h ramp/120C/2h hold/1h ramp/200C/2h hold/1h 

ramp/350C/4h hold. 
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Composition by weight BET SA 

[m2g-1] 

10 2.38 7.64 0 0.713 Ce0.5Co0.45Ru0.05 71 

10 1.98 7.64 0.468 0.713 Ce0.42Y0.08Co0.45Ru0.05 89 

10 1.59 7.64 0.937 0.713 Ce0.33Y0.17Co0.45Ru0.05 86 

10 1.19 7.64 1.406 0.713 Ce0.25Y0.25Co0.45Ru0.05 67 

10 0.79 7.64 1.874 0.713 Ce0.17Y0.33Co0.45Ru0.05 68 



10 0.40 7.64 2.343 0.713 Ce0.08Y0.42Co0.45Ru0.05 71 

10 0 7.64 2.812 0.713 Y0.5Co0.45Ru0.05 58 

 

Figures 2-3 show the resulting light-off curves for both propylene and CO for the Ru-Co-Ce-Y library 

and the Pt/Al2O3 standard using a mixed propylene-CO-CDA feed. It can be seen from these plots 

that several catalysts reveal a lower light-off temperature for both CO and propylene as compared to 

the 0.5% Pt on alumina standard catalyst.  

 

In addition to the synergistic RuCo and RuCoCe systems, RuSn and RuCu families of active hits were 

also discovered and optimized for CO oxidation [1] and the effect of doping was investigated for 

supported and bulk mixed oxide catalysts.  

 

Figure 2: Light off curves (propylene conversion versus reaction temperature) for Ru-Co-Ce-Y leads 

in 8x1 multi channel fixed bed reactor using a mixed propylene-CO-CDA feed.  
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Figure 3: Light off curves (CO conversion versus reaction temperature) for Ru-Co-Ce-Y leads in 8x1 

multi channel fixed bed reactor using a mixed propylene-CO-CDA feed.  
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SCR-DeNOx over Ru-based compositions 
NOx abatement by selective catalytic reduction (SCR) with injected ammonia (4 NO + 4 NH3 + O2  4 

N2 + 6 H2O) has been extensively studied. The commercial honeycomb catalyst for NH3-SCR Stack 

DeNOx used in the clean up of exhaust gas streams in stationary power plants at low to medium 

temperatures basically consists of V2O5/WO3/TiO2 and allows up to 90% NOx removal to be achieved 

with less than about 5ppm ammonia slip. We have targeted approximately an order of magnitude 

more active SCR Stack DeNOx catalysts operating in a broad temperature window in the range of 

200-300°C.   

 

We have initiated a broad screening program encompassing supported redox, noble and base metal 

catalysts for LT-SCR-DeNOx in high-throughput scanning mass spectrometers [3].  The aim was to 

discover novel compositions with drastically enhanced activity or a broader dynamic temperature 

window, provide an activity ranking of catalyst compositions and identify general trends. A large 

number of catalyst libraries consisting of binary, ternary, and quaternary catalyst compositions were 

synthesized and screened. 

 

A representative library containing 24 metals supported on a gamma alumina carrier is shown in 

figures 4-6 (library design, NO conversion plotted versus N2 production and versus wafer column). 

Note that different precursors have been used for some metals. Gamma-alumina is identified as 

active carrier. High N2O production is found for  Mn > Co > Mo (already indicated by the deviation 

from the NO-N2 mass balance). For 300°C, the activity ranking is Ru > Co ~ Cu > V ~ Fe > Mn. Ru is 



less active at low temperatures but highly active at medium and high temperatures. NiO is inactive but 

Co oxide is active. 

 

Figure 4: Library design for discovery wafer containing 24 metals (30 different metal precursors) on 

gamma alumina carrier (Catalox SBa150). 8- and 7-point vertical gradients of metal loading. 

Calcination at 450C. 
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Figure 5: Screening data: NO conversion versus N2 production 
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Figure 6: Screening data: NO conversion versus wafer column at 300C 
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Conclusions 
By applying high throughput screening methodologies in microreactors in combination with scale up 

and further optimization of leads in parallel fixed bed reactors we have classified and ranked metals 

with respect to their catalytic function for CO oxidation, VOC destruction (propylene combustion) and 



NH3-SCR-DeNOx. We have identified Ru based building blocks as highly active for combined CO 

oxidation and propylene combustion in mixed CO-C3-O2 feed and developed synergistic Ru-Co, Ru-

Cu and Ru-Sn compositions, preferably doped with or supported on ceria, that are competitive to 

state-of-art Pt catalysts [4-5]. Independently, when executing a combinatorial screening program on 

SCR-DeNOx over supported metals (using NH3 as reductant) we found Ru and Cu to be the most 

active metals, and moreover form a synergistic pair. Therefore, Ru based compositions such as Ru-

Co and Ru-Cu systems could lead to novel multi-functional classes of catalysts suitable for 3-way 

catalytic converters. 
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