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Abstract

High-throughput proteomic analyses of tissue and bio-fluid samples can yield datasets
comprising measured differences in hundreds - or even thousands - of proteins. In principle,
this rich source of data can provide a systems-level view of the biological processes in an
experiment, leading to testable hypotheses describing the mechanisms that led to the
observed changes. But typically, the integration of hundreds of observations to infer the active
biological networks is an unmanageable task, limiting the analysis to categorization of the
changed proteins by annotations and by patterns of modulation. To identify disease
mechanisms, compound mechanisms and biomarkers from proteomic and systems biology
experiments requires the development of a model of biology. Using a mental model, a scientist
can reason about hundreds of distinct molecules present within a cell, but reasoning over tens
of thousands of molecules and their interrelationships is impossible. We describe the
development and application of a very large-scale causal, computable model of biology which
has been used to identify molecular cause and effect hypotheses consistent with data from
proteomic experiments. Automated causal analysis can be used to define upstream networks
of molecular events which could result in experimentally observed protein changes. It can be
used to identify possible causal pathways linking initial experimental perturbations to observed
protein or phenotypic changes. Large-scale causal analysis is a powerful new systems-based
approach for the interpretation of molecular state measurements in drug discovery.
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Figure 1. Proteomic data and systems level understanding
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Figure 2. The conceptual chaIIenge of high-throughput data
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Figure 3. Computable framework for reasonlng about b|olog|cal state changes
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Figure 4. Causal System Models
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Figure 5. An integrated technology platform and knowledge environment



Framework: A compact, precise ontology of molecular
~ entities, thelr activities and modifications, blologlcal

processes and Iocatlons
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Examples of entities used in the Genstruct knowledge representation
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Figure 6. Examples of entities used in the Genstruct knowledge representation
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Figure 7. Example of representation of a simple causal network



Exper]imental Data: Significant molecular differences between
‘well-defined biological states are abstracted as “state:
changes” associated with specific concepts in the framework.
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Figure 8. Biological state changes associated with specific entities
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Figure 9. Predictions of state changes based on observed changes and causal relationships



_Syneﬁ‘gy Blologlcal States from other panomic measurements
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Figure 10. Integration of data from multiple measurement modalities in a causal framework



Reasoniné: Causal System Models are created by identifying
the most explanatory biological networks and merging them
into a srngle mternally consistent model
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Figure 11. Causal reasoning to generate and select hypotheses
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Scaling: To ensure success,

the system requires a
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Figure 12. Scale of the system
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C%usal System Modeling shifts the hypothesis-driven

research paradigm to handle systems-level measurements
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Figure 13. Small scale experiments and hypothesis-driven research



Causal System Modeling shifts the hypothesis-driven
research paradigm to handle systems-level measurements
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Figure 14. High throughput methodology and hypothesis-driven research

_



Iy
Causal System Modeling shifts the hypothesis-driven
research paradigm to handle systems-level measurements
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Figure 15. Causal System Modeling and hypothesis-driven research
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Causal System Models enhance the value and
utility of proteomic measurements

+ Because the framework integrates measurements from multiple
modalities (proteomic, genomic, metabonomic), each gains value by
synergy with the others.

— RNA transcript abundance can be compared with protein abundance

— Changes in enzyme abundance can be compared to changes in
substrates

— Ambiguous downstream abundance changes can be resolved to
specific upstream signaling pathways by phosphorylation assays

» Specific identification of protein species becomes more valuable
when the Causal System Model uses their changes to distinguish
between competing hypotheses

— Full-length proteins vs. cleavage products
- |ldentifying changes in protein modification
— Distinguishing isoforms and splice variants
— Verifying species origin in xenograft models

[
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Figure 16. Causal System Models enhance the value and utility of proteomic measurements



Summary

+ Large scale causal models are a practical means to incorporate high-throughput
proteomics data into hypothesis-driven, mechanism-based research

— Generation of testable hypotheses
— |dentification of biomarkers
— Selection of novel drug targets
» Large scale Causal Models can integrate and simultaneously exploit measurements
from multiple ‘omics technologies.
+ Causal System Modeling shifts the research paradigm to make high-throughput
measurements a critical part of hypothesis driven research.
« Causal system modeling has been successfully applied to a diverse range of biology
and model systems
— Breast cancer
— Prostate cancer
— Muscle hypertrophy and atrophy
—  Type 2 diabetes
— Vascular inflammation
— Dyslipidemia
+ Construction and effective use of large scale causal models depends upon a
compact, precise ontology focused on simple causal relationships.
» Due to the conserved nature of biology, once biological knowledge is encoded, it can
be transparently reused, both within a disease area and across mammalian biology
» Our methodology generates Causal System Models that characterize disease states
or other biological phenomena. Because they are fully supported by the literature
references that underlie each causal connection, they are both a mechanism for = &

“what if” predictions and a dynamic knowledge resource. ¢ Eﬂl
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Figure 17. Summary
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