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Introduction 
 Physical activity and type of diet have been the key factors influencing the 
development of diabetes (Tuomilehto 2001).  Studies conducted recently indicate that one 
in three Americans born in the year 2000 will suffer from diabetes (Narayan et al., 2003).  
Biosensors combine the exquisite selectivity of biology with the processing power of 
modern micro-electronics and opto-electronics to offer new powerful analytical tools 
with major applications in medicine, environmental diagnostics, and in the food and 
processing industries.  
  

 Pei et al. (2004) very recently indicate that diabetes is amongst the most prevalent 
and costly diseases in the world.  In the year 2004 these authors estimated approximately 
17 million people in the United States have diabetes. This is roughly 6.2 % of the 
population. Yonzon et al. (2004) further indicate that there are 16 million prediabetics in 
the United States.  The American Diabetic Association (2003) indicates that the 
economic estimated annual cost of diabetes is $132 billion.  There have recently been 
news reports that indicate that diabetes is reaching epidemic proportions. 
 
 According to the World Health Organization (WHO) the number of diabetics will 
double worldwide from 150 million to 300 million by the year 2025 (Newman et al., 
2004). This represents a doubling of the number of diabetics in about 20 to 22 years. As 
expected, a considerable amount of research has been done and effort been spent in 
detecting glucose levels, which are critical in this disease (Henry, 1998; Thundat et al., 
1994; Thundat et al., 1995; Shrestha et al., 2001).   
 
 In this manuscript, we re-analyze using fractal analysis the diffusion-limited 
binding data of glucose and insulin measurements (Leegsma-Vogt et al., 2004) on 
biosensor surfaces. Fractal analysis has been used previously to analyze the diffusion-
limited analyte-receptor reactions occurring on heterogeneous biosensor surfaces (Butala 
et al., 2003a; Butala et al., 2003b; Sadana, 2003). Values of the binding rate coefficient, k 
and the fractal dimension, Df, are provided. The fractal dimension, Df, is a quantitative 
measure of the degree of heterogeneity on the surface.  An increase in the value of the 
fractal dimension on the surface indicates an increase in the degree of heterogeneity on 
the sensor chip surface. 
 
 
 



Theory 
Single-fractal analysis 
Binding rate coefficient: Havlin (1989) indicates that the diffusion of a particle (analyte 
[Ag]) from a homogeneous solution to a solid surface (e.g. receptor [Ab]-coated surface)  
on which it reacts to form a product (analyte-receptor complex; (Ab.Ag)) is given by:  
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Here Df,bind  is the fractal dimension of the surface during the binding step. tc is the cross-
over value. Above the characteristic length, rc, the self-similarity of the surface is lost and 
the surface may be considered homogeneous.  Above time, tc, the surface may be 
considered homogeneous, since the self-similarity property disappears, and ‘regular’ 
diffusion is now present.  For a homogeneous surface where Df  is equal to 2, and when 
only diffusional limitations are present, p = ½ as it should be. 
 
Dissociation Rate Coefficient :The diffusion of the dissociated particle (receptor [Ab] or 
analyte [Ag]) from the solid surface (e.g., analyte [Ag]-receptor [Ab]) complex coated 
surface) into solution may be given, as a first approximation by: 
 
                    (Ab.Ag) ≈ -t(3-D

f,diss
)/2 = tp       (t>tdiss)                                  (2)                          

       Here Df,diss is the fractal dimension of the surface for the dissociation step.   
This corresponds to the highest concentration of the analyte-receptor complex on  
the surface.  Henceforth, its concentration only decreases.  The dissociation kinetics  
may be analyzed in a manner ‘similar’ to the binding kinetics.    
 
Dual-fractal analysis 
2.2.1 Binding rate coefficient   
  Sometimes, the binding curve exhibits complexities and two parameters (k, Df )  
are not sufficient to adequately describe the binding kinetics.  This is further corroborated  
by low values of r2 factor (goodness-of-fit).  In that case, one resorts to a dual-fractal  
analysis (four parameters; k1, k2, Df1, and Df2) to adequately describe the binding kinetics.  
The single-fractal analysis presented above is thus extended to include two fractal  
dimensions.  At present, the time (t = t1) at which the first fractal dimension ‘changes’ to  
the second fractal dimension is arbitrary and empirical. For the most part it is dictated by  
the data analyzed and the experience gained by handling a single-fractal analysis.  A  
smoother curve is obtained in the ‘transition’ region, if care is taken to select the correct  
 
 
 
 
 
 



 
number of points for the two regions. In this case, the analyte-receptor complex is given  
by:   
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) / 2 = tp1        (t < t1) 

(Ab.Ag) ≈  t(3-D
f2,bind

)/2= tp2   (t1 <t <t2) = tc       (3)                          
            t1/2                                               (t > tc) 

 
 
Results 
The fractal analysis will be applied to the binding of glucose (Leegsma-Vogt et al., 2004). 
Leegsma-Vogt et al. (2004) have recently presented the potential of biosensor technology 
in clinical monitoring and in experimental research.  They do emphasize that for 
continuous in vivo monitoring of patients very little data is reported.  For example, 
Rhemberg-Boom (1999) describes a biosensor device and ultrafiltration sampling for the 
continuous in vivo monitoring of glucose. Leegsma-Vogt et al. (2004) emphasize that 
biosensors may be used for the continuous online monitoring of glucose and lactate 
which would help facilitate therapeutic interventions when need be.  Figure 1 shows the 
oral glucose tolerance test (OGGT) administered by Leegsma-Vogt et al. (2004) with 
glucose and insulin measurements.  Probes placed at different locations measured plasma 
insulin (Figure 1a), plasma glucose (Figure 1b), adipose tissue interstitial glucose (Figure 
1c), and connective tissue interstitial glucose (Figure 1d).  
 
 Figure 1a shows the binding and dissociation of insulin in plasma. A dual-fractal 
analysis is required to adequately describe the binding kinetics. A single-fractal analysis 
is adequate to describe the dissociation kinetics. The values of (a) the binding rate 
coefficient, k and the fractal dimension, Df for a single-fractal analysis, (b) the binding 
rate coefficients, k1 and k2, and the fractal dimensions, Df1 and Df2 for a dual-fractal 
analysis, and (c) the values of the dissociation rate coefficient, kd and the fractal 
dimension in the dissociation phase, Dfd for a single-fractal analysis are given in Table I. 
Note that as the fractal dimension value increases by a factor of 2.47 from Df1 equal to 
0.6827 to Df2 equal to 1.6852, the binding rate coefficient increases by factor of 4.92 
from k1 equal to 1.0232 to k2 equal to 5.0388. An increase in the degree of heterogeneity 
on the probe surface leads to an increase in the binding rate coefficient.   
 
 Figure 1b shows the binding and dissociation of glucose in plasma.  A dual-fractal 
analysis is required to adequately describe the binding kinetics. A single-fractal analysis 
is adequate to describe the dissociation kinetics. The values of (a) the binding rate 
coefficient, k and the fractal dimension, Df for a single-fractal analysis, (b) the binding 
rate coefficients, k1 and k2, and the fractal dimensions, Df1 and Df2 for a dual-fractal 
analysis, and (c) the values of the dissociation rate coefficient, kd and the fractal 
dimension in the dissociation phase, Dfd for a single-fractal analysis are given in Table I. 
 
 Figure 1c shows the binding and dissociation of adipose tissue interstitial glucose.  
A dual-fractal analysis is required to adequately describe the binding kinetics.  A single-



fractal analysis is adequate to describe the dissociation kinetics.  The values of (a) the 
binding rate coefficient, k and the fractal dimension, Df for a single-fractal analysis, (b) 
the binding rate coefficients, k1 and k2, and the fractal dimensions, Df1 and Df2 for a dual-
fractal analysis, and (c) the values of the dissociation rate coefficient, kd and the fractal 
dimension in the dissociation phase, Dfd for a single-fractal analysis are given in Table I.  
Note that as the fractal dimension value increases by a factor of 3.31 from Df1 equal to 
0.5720 to Df2 equal to 1.891, the binding rate coefficient increases by factor of 8.88 from 
k1 equal to 0.0545 to k2 equal to 0.4841.  Once again, an increase in the degree of 
heterogeneity on the probe surface leads to an increase in the binding rate coefficient.  
 
 On comparing the binding rate coefficient values for glucose in plasma and in the 
adipose interstitial tissue one notes that the binding rate coefficient values, k1 and k2 are 
higher in the interstitial adipose tissue than in the plasma.  As expected, the 
corresponding values of the fractal dimensions are also higher.   
    
 Figure 1d shows the binding and dissociation of connective tissue interstitial 
glucose.  A single-fractal analysis is adequate to describe the binding and the dissociation 
kinetics.  The values of (a) the binding rate coefficient, k and the fractal dimension, Df  
for a single-fractal analysis, and (b) the values of the dissociation rate coefficient, kd and 
the fractal dimension in the dissociation phase, Dfd  for a single-fractal analysis are given 
in Table I.  
 
 Figure 2a and Table I show the decrease in the dissociation rate coefficient, kd 
with an increase in the fractal dimension in the dissociation phase, Dfd. For the data 
presented in Table I and for glucose and insulin present in plasma and in interstitial 
adipose and connective tissue, the dissociation rate coefficient, kd is given by: 
 
                 
                        kd = (0.0939 ± 0.0614)Dfd 

-1.583 ± 0.753                                            (4)  
 
Note that the data for glucose and insulin are plotted together.  The dissociation rate 
coefficient, kd exhibits close to a negative one and one-half order dependence on the 
degree of heterogeneity (Dfd) that exists on the biosensor surface.  
 

Figure 2b and Table I show the increase in the ratio of the binding and the 
dissociation rate coefficient, k1/kd with an increase in the ratio of the fractal dimensions, 
Df1/Dfd.  For the data presented in Table I and for glucose and insulin present in plasma, 
and for glucose in interstitial adipose tissue and in interstitial connective tissue, the ratio 
of the binding and the dissociation rate coefficient, k1/kd is given by: 
 
                                      (k1/kd)  = (5.149 ± 1.912)(Df1/Dfd)1.371 ± 0.1036                       (5)  
 
The ratio of the binding and the dissociation rate coefficient, k1/kd exhibits an order of 
dependence between first and one and one-half order (equal to 1.371) on the ratio of the 
fractal dimensions, Df1/Dfd that exists on the biosensor surface. 
 



Conclusions 
 A fractal analysis is used to model the binding and dissociation kinetics of  
connective tissue interstitial glucose, adipose tissue interstitial glucose, insulin and other 
related analytes on biosensor surfaces. The analysis provides insights into diffusion-
limited analyte-receptor reactions occurring on heterogeneous biosensor surfaces. The 
fractal analysis provides a useful lumped parameter(s) analysis for the diffusion-limited 
reaction occurring on a heterogeneous surface via the fractal dimension and the rate 
coefficient. It is a convenient means to make the degree of heterogeneity that exists on 
the surface more quantitative. 
 
References 
 
Tuomilehto, J. (2001) N. Engl. J. Med. 344, 1343. 
 
Narayan, K. M. V., Boyle J. P., Thompson, T. J., Sorensen, S. W., and Williamson,  
D. F. (2003) Lifetime risk for diabetes mellitus in the United States, JAMA, the Journal 
of the American Medical Association 290, 1884-1890. 
 
Yonzon, C. R., Haynes, C. L., Zhang, X., Joseph, T. Jr., and van Duyne, R. P. (2004) A 
glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, 
temporal stability, reversibility, and resistance to serum protein interference, Anal. Chem. 
76, 78-85. 
American Diabetic Association, “Study shows sharp rise in cost of diabetes nationwide,” 
Report released February 7, 2003, contact Mark Overbay, 1021 North Beauregard Street, 
Alexandria, VA, 22311. www.diabetes.org/for-media/2003-press-releases/02-27-03.jsp 
 
Newman, J. D., Tigwell, L. J., Turner, A. P. F., and Warner, P. J. (2004) Biosensors-An 
Inside View, Institute of Bioscience and Technology, Cranfield University at Silsoe, 
Bedfordshire, United Kingdom.   
 
Henry, C. (1998) Getting under the skin: implantable glucose sensors, Anal. Chem. 70, 
594A-599A.  
 
Thundat, T., Warmack, R. J., Chen, G. Y., and Allison, D. P. (1994) Thermal and 
ambient-induced deflections of scanning force microscope cantilevers, Applied Physics 
Letters 64, 2894-2896.   
 
Thundat, T., Wachter, E. A., Sharp, S. L., and Warmack, R. J. (1995) Detection of 
mercury vapor using resonating microcantilevers, Applied Physics Letters 66, 1685. 
 
Shrestha, S., Shetty, R. S., Ramanathan, S., and Daunert, S. (2001) Simultaneous 
detection of analytes based on genetically  engineered whole cell sensing systems, Anal. 
Chim. Acta.  444, 251-260.   
 



Leegsma-Vogt, G., Rhemrev-Boom, M. M., Tiessen, R. G., Venema, K., and Korf, J. 
(2004) The potential of biosensor technology in clinical monitoring and experimental 
research, Bio-Medical Materials and Engineering 14, 455-464. 
 
Butala, H.D., Ramakrishnan, A., and Sadana, A. (2003a) A fractal analysis of analyte-
estrogen receptor binding and dissociation kinetics using biosensors: environmental and 
biomedical effects, Biosystems 70, 255-270. 
 
Butala, H.D., Ramakrishnan, A., and Sadana A. (2003b) A mathematical analysis using 
fractals for binding interactions of estrogen receptors to different ligands on biosensor 
surfaces,  Sensors  Actuators Chem B 88, 266.  
 
Butala, H.D., and Sadana, A. (2003) A Fractal Analysis of Analyte-estrogen Receptor 
Binding and Dissociation Kinetics Using Biosensors: Environmental Effects, J. Colloid 
Interface Sci. 263, 420-431.  
 
Havlin, S. (1989) Molecular diffusion and reaction, in: The fractal approach to 
heterogeneous chemistry. In surfaces, colloids, polymers, pp 251-269, Wiley, New York .  
 
Rhemberg-Boom, R. (1999) Biosensor device and ultrafiltration sampling system for 
continuous in vivo monitoring of glucose, Biocybernetics and Biomedical Engineering 19, 
97-104. 
 
Corel Quattro Pro 8.0 (1997) Corel Corporation Limited, Ottawa, Canada. 
 
Figures 
 

  

0 

20 

40 

60 

80 

100 

120 

m
U

/L
, i

ns
ul

in

0 50 100 150 200 
Time, min

                    

0 

2 

4 

6 

8 

10 

12 

m
M

 g
lu

co
se

0 50 100 150 200 
Time, min

 
                               Figure 1a                                                                        Figure 1b  
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                           Figure 1c                                                                       Figure 1d 
 
 
 
 
Figure 1: (a)   Binding and dissociation of insulin in plasma in the oral glucose                     
                                tolerance test [16] 
                        (b)    Binding and dissociation of glucose in plasma                               
                        (c)    Binding and dissociation of adipose tissue interstitial glucose                                           
                        (d)    Binding and dissociation of connective tissue interstitial glucose  
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  Figure 2a      Figure 2b 
 
Figure 2: (a) Decrease in the dissociation rate coefficient, kd with an increase in the     
                     fractal dimension for dissociation, Dfd      
               (b) Increase in the ratio of binding and dissociation rate coefficient k1/kd with an                              
                     increase in the ratio of the fractal dimensions Df1/Dfd      
 
 
 
 
 
 
 
 
 



Tables 
TABLE Ia: Binding Rate Coefficients for Glucose in Plasma, in Connective Tissue, and 
in Adipose Tissue, and Insulin in Plasma (Leegsma-Vogt et al., 2004) 

 
Compound 

 
Location k k1 k2 kd 

Insulin 
 

Plasma 1.8557±0.334 1.0232±0.1309 5.0388±0.3671 0.2436±0.0875 

Glucose 
 

Plasma 0.0329±0.0154 0.00101±0.0002 1.1480±0.0974 0.1019±0.0103 

Glucose Interstitial 
adipose 
tissue  

0.1246±0.0242 0.0545±0.0063 0.4841±0.0164 0.0513±0.0056 

Glucose Interstitial 
connective 

tissue  

1.220±0.067 na na 0.0519±0.0081 

 
TABLE Ib: Fractal Dimensions for Glucose in Plasma, in Connective Tissue, and in 
Adipose Tissue, and Insulin in Plasma (Leegsma-Vogt et al., 2004) 

 
Compound 

 
Location Df Df1 Df2 Dfd 

Insulin 
 

Plasma 1.1804±0.116 0.6827±0.175 1.6852±0.160 0.602±0.6334 

Glucose 
 

Plasma 0.3128±0.402 0 2.1168±0.227 1.2298±0.136 

Glucose Interstitial 
adipose 
tissue  

1.200±0.111 0.5720±0.136 1.891±0.0456 1.4696±0.101 

Glucose Interstitial 
connective 

tissue  

1.9284±0.066 na na 1.0193±0.146 
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