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1 Introduction

In recent years, multi-scale modeling has received a great deal of attention in many
disciplines of science and engineering. While almost every problem that we encounter
has some multi-scale features in one way or another, and multi-scale modeling has
been used in various forms for a very long time, traditionally the predominant ap-
proach to scientific modeling is to focus on one particular scale, treating other scales
either empirically, or in a very restrictive setting. Constitutive relations, for example,
are created to model the effects of the smaller scales. They can be the “strike of a
genuis”, representing fundamental physical insight, or a convenient way of “sweeping
things under the rug”, hiding our basic ignorance about the process at the micro-
scale. In other cases when microscopic modeling is used, one is often forced to study
macroscopically very simple systems, such as homogeneous systems, since realistic
macroscopic systems are beyond the reach of these methods.

The recent surge of interest on multi-scale modeling is due largely to the realiza-
tion that effective modeling strategies can be found by considering different models
at different scales simultaneously, leading to models or simulation methods that can
handle realistic macroscopic systems and at the same time, faithful to the necessary
microscopic details. Many strategies have been proposed for different multi-scale
problems. Some are specific to the particular problem; but some are of a general
nature. Among the general ideas that have been suggested are information or pa-
rameter passing, also referred to as sequential or serial coupling methods, domain
decomposition, adaptive model refinement, and various coarse-graining techniques.

In light of this vast development involving many different scientific disciplines, it
is appealing to set up a general mathematical framework that would ideally apply
to different situations. The heterogeneous multi-scale method (HMM) was developed
exactly for this purpose [7, 9]. Recent advances seem to suggest that HMM does
hold the promise of providing general guidelines for designing multi-scale methods
for many different problems in different areas, as well as a framework for analyzing
the stability, accuracy and efficiency of multi-scale methods. The motivation is very
similar to that of the finite element method: Even though most of the basic ideas of
the finite element method had already existed in the 40’s and 50’s, later work by the
mathematics community on the framework of the finite element method, including
the weak formulation of the problems, setting up finite element spaces, and basic
error estimates, were essential for the wide range of successes of the finite element
method. While HMM certainly has not received the same level of acceptance as the
finite element method, we do believe that it is indeed a very convenient framework,
useful for many problems.

We will put off the discussion of HMM until the next section. But at this point,
let us make two important remarks in order to put things into perspective. The first
remark is that to a large extend, HMM is an abstraction and improvement of the
ideas that existed in different forms in, for example, in the Car-Parrinello method [5],
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the quasi-continuum method [22], kinetic schemes for gas dynamics [18], the work in
[23] on stochastic ODEs with multiple time scales, the projective dynamics for stiff
ODEs [12], etc. We have found both the abstraction and the improvement useful.
The second remark is that while HMM is a useful framework, it does not solve any
specific problem by itself, since it leaves out several important details that need to
be filled out according to the particular problem that it is applied to. Again this is
similar to the situation in finite element method: The finite element method is useless
unless we know how to construct the finite element space for the particular problem.
We will illustrate this through several examples.

In this paper, we wil focus on two important settings for which a multi-scale
method is called for.

In the first case we are only interested in the macroscopic behavior of the system,
but we do not have at our disposal a satisfactory macroscopic model that is convenient
for numerical computations. Instead, we have a microscopic model that we trust.

In the second case, besides the macroscopic behavior, we also would like to know
about some microscopic details, such as samples of typical microstructures, micro-
scopic behavior near defects, and defect dynamics.

In both cases, we are NOT interested in the details of the microscopic states
everywhere. Our main objective is to design simulation methods that are much
more efficient than solving the microscopic model everywhere. Such a viewpoint is
emphasized in [8, 9].

This talk draws on joint work with many people, including Bjorn Engquist, Xi-
antao Li, Di Liu, Weiqing Ren, Eric Vanden-Eijnden and Xingye Yue. It is my
pleasure to thank them all for the many helpful discussions that we had, as well as
their contributions that lead to the current understanding of HMM. This work is
supported in part by ONR and DOE grants.

2 The HMM Framework

The general setting is as follows. We are given a microscopic system whose state
variable is denoted by u, together with a microscale model, which can be abstractly
written as

f(u, b) = 0 (1)

where b is the set of auxiliary conditions, such as initial and boundary conditions for
the problem. The macroscopic state of the system is denoted by U . U satisfies some
abstract macroscopic equation:

F (U, D) = 0 (2)

where D stands for the macroscopic data that are necessary in order for the model
to be complete.
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Figure 1: Schematics of the HMM framework

Let us denote by Q the compression or projection operator that maps u to U , and
R any operator that reconstructs u from U :

Qu = U, RU = u (3)

Q and R should satisfy: QR = I where I is the identity operator. Q is called a
compression operator instead of a projection operator since it can be more general
than projection. Nevertheless in many cases, it is a projection operator. Other ter-
minologies for the same operator include the coarse-graining operator [21], averaging,
and restriction [14]. Similarly the reconstruction operator is the standard terminol-
ogy in shock capturing schemes [16]. They are also called prolongation operator in
multi-grid methods, and lifting operator in [14].

HMM consists of two main components.

1. Selection of a macroscopic solver. Even though the macroscopic model is not
available completely or is invalid on part of the computational domain, one
uses whatever knowledge that is available on the form of F to select a suitable
macroscale solver.

2. Estimating the missing macroscale data D using the microscale model. This is
typically done in two steps:

(a) Constrained microscale simulation: At each point where some macroscale
data is needed, perform one or a series of constrained microscopic sim-
ulations. The microscale solution needs to be constrained so that it is
consistent with the local macroscopic state, i.e. b = b(U).

In practice, this is often the most important technical step.

(b) Data processing: Use the data generated from the microscopic simulations
to extract the needed macroscale data.
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Data estimation can either be performed “on the fly” as in a concurrent coupling
method, or in a pre-processing step as in a serial coupling method. The latter is often
advantageous if the needed data depends on very few variables.

3 The Heterogeneous Multi-scale Finite Element

Method

3.1 The statement of the problem

Consider
−∇ · (kε(x)∇uε(x)) = f(x), x ∈ Ω ⊂ R

d. (4)

Here ε is a small parameter that signifies explicitly the multi-scale nature of the
coefficient kε(x), which will be referred to as the conductivity tensor. Problems of
this type have been extensively studied in the context of heat or electric conduction
in composite materials, mechanical deformation of composites, etc [3]. In particular,
the homogenization technique was initially developed for analyzing these problems
[1, 2, 3]. However, except for the case when the microstructure is locally periodic,
it is difficult to make use of the homogenized equations for numerical purpose. In
addition, the homogenized equation lacks information about the micro-scale behavior
which is important for analyzing stress distribution in composites, for example.

In general, we would like to model the macroscopic behavior of the potential field
uε(x). In many cases, we would also like to model, at least statistically, the behavior
of its gradients.

3.2 The macro-scale solver and the needed data

We will take a finite element approach. For (4), the macro-scale solver can be chosen
simply as the standard C0 piecewise linear finite element method over a macroscopic
triangulation TH of mesh size H. We will denote by XH the macroscopic finite element
space which could be the standard piecewise linear finite elements over TH .

The data that need to be estimated from the microscale model is the stiffness
matrix on TH : A = (Aij), where

Aij =

∫

Ω

∇Φi(x)KH(x)∇Φj(x)dx. (5)

Here KH(x) is the effective conductivity tensor at scale H and {Φi(x)} are the basis
functions for XH . Had we known KH(x), we could have evaluated Aij simply by
numerical quadrature: Let fij(x) = ∇Φi(x)KH(x)∇Φj(x), then

Aij =

∫

Ω

fij(x)dx '
∑

T∈TH

|T |
∑

xk∈T

ωkfij(xk) (6)
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where {xk} and {ωk} are the quadrature points and weights respectively, |T | is the
volume of the element |T |.

In the absence of explicit knowledge of KH(x), our problem reduces to the ap-
proximation of the values of {KH(xk)}. This will be done by solving the original
microscale model locally around each quadrature point {xk} (See Figure 2).

Let Iδ(xk) 3 xk be a cube of size δ. Consider

∇ ·
(

kε(x)∇φε
)

= 0, x ∈ Iδ(xk). (7)

The main objective is to probe efficiently the microscale behavior under the constraint
that the average (e.g. macroscale) gradient of the solution φε is fixed to be a given
constant vector. Having solutions to this local problem, we can define the effective
conductivity tensor at xk by the relation

〈kε(x)∇φε〉Iδ
= KH(xk)〈∇φε〉Iδ

, (8)

where 〈v〉Iδ
= 1

|Iδ|

∫

Iδ
vdx. The basis of this procedure is the homogenization theo-

rem which has been proved in various contexts; the most general result is found in
[17]. The homogenization theorems allow us to define the effective (or homogenized)
conductivity tensor, by considering the infinite volume limit of the solutions of the
microscale problem subject to the constraint that the average gradient remains fixed.
The effective tensor is defined by an average relation of the type (8) in the infinite
volume limit, i.e.

L =
δ

ε
→∞

In the special case when the microstructure is periodic, the infinite volume problem
reduces to a periodic problem and therefore can be considered on its period.

In practice, one solves (7) with the constraint 〈∇φε〉Iδ
= e1, · · · , ed respectively,

where d is the spatial dimension of the problem. Denote these solutions by φε
j, j =

1, · · · , d. Then
(〈kε(x)∇φε

1〉Iδ
, · · · , 〈kε(x)∇φε

d〉Iδ
) = KH(xk). (9)

In summary, the overall algorithm consists of the following steps:

• Solve for φε
1, · · · , φ

d
ε using the boundary conditions discussed below, at each xk.

• Obtain the approximate values of KH(xk) by averaging the microscale solutions
using (9).

• Assemble the effective stiffness matrix using (6).

• Solve the macroscale finite element equation using the effective stiffness matrix.
If we express the macroscale solution in XH in the form of UH(x) =

∑

UjΦj(x),
then the macroscale finite element equation takes the standard form:

AU = F (10)

where U = (U1, · · · , UN )T , F = (F1, · · · , FN)T , Fj = (f(x), Φj(x)).
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Figure 2: Illustration of HMM for solving (4). The dots are the quadrature points in (6).

The little squares are the microcell Iδ(xk).

3.3 The constrained micro-scale solver

The local microscale problem is constrained by the local macroscopic state through
the constraint:

〈∇φε〉Iδ
= G (11)

for some fixed constant vector G. [24] considered three different types of boundary
conditions for the local problem.

1. Dirichlet Formulation.

u(x) = G · x, on ∂Iδ. (12)

2. Periodic Formulation.

u(x)−G · x is periodic with period Iδ. (13)

3. Neumann Formulation.

kε(x)∇u(x) · n = λ · n, on ∂Iδ, (14)

where the constant vector λ ∈ R
d is the Lagrange multiplier for the constraint that

〈∇u〉 = G. (15)

For example when d = 2, to solve problem (14) with the constraint (15), we first solve
for u1 and u2 from

{

−∇ · (kε(x)∇ui) = 0, in Iδ,
kε(x)∇ui(x) · n = µi · n, on ∂Iδ,

(16)

for i = 1, 2, where µ1 = (1, 0)T , µ2 = (0, 1)T . Then given an arbitrary G, the Lagrange
multiplier λ = (λ1, λ2)

T is determined by the linear equations

λ1〈∇u1〉+ λ2〈∇u2〉 = G (17)
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and the solution of (14)-(15) is given by u = λ1u1 + λ2u2.
One can check easily that

〈∇u(x)〉 ≡

∫

−
Iδ

∇u(x)dx ≡
1

|Iδ|

∫

Iδ

∇u(x)dx = G (18)

holds for all three formulations.
The performance of these formulations was carefully studied in [24]. The main

conclusions were:

1. Periodic boundary condition performs better than the other two formulations.

2. The variance of the estimated effective tensor behaves as σ2 ∼ L−d for the
random checker-board problem, and σ2 ∼ L−2 for the periodic problem.

3. In general Neumann formulation underestimates the effective tensor and Dirich-
let formulation overestimates the effective tensor. In both cases, the effective
conductivity tensors converge to the infinite volume limit with first order accu-
racy O(1/L), where L is the cell size.

This method was extended in [25] to study the elastic deformation of functionally
graded materials.

4 Complex Fluids

4.1 Statement of the problem

Here we discuss how HMM can be applied to model the dynamics of complex fluids to
provide “first principle”-based constitutive modeling. This allows us to avoid using
empirical constitutive relations that have been popular in traditional approaches.
Here “first principle” is in quotation marks since by that we really meant molecular
dynamics with empirical potentials. However, the methodology discussed below is also
valid if the microscopic model is replaced by first principle-based molecular dynamics.

Using standard notations for liquids, we have the molecular dynamics model as

{

mẋi(t) = pi(t)

ṗi(t) = Fi

(19)

i = 1, 2, · · · , N. Here xi and pi are its position and momentum respectively, Fi is
the force acting on the i-th particle. We will work in the isothermal setting, and the
Nosé-Hoover thermostat can be used to control the temperature of the system.

We will assume that the atomic forces are short ranged. More complex atomistic
models are often required to model complex fluids accurately. For example, one might
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use a bead-spring model to represent flexible polymers. Here we will not consider such
complications, since the basic methodolgy remains the same.

At the continuum level, the dynamics of incompressible flow have to obey conser-
vation laws of mass and momentum:

{

ρ∂tu = ∇ · τ

∇ · u = 0
(20)

where the momentum flux −τ = ρu ⊗ u − τd. Here ρ is the density of the fluid
which is assumed to be a constant, u = (u, v) is the velocity field, and τd is the
stress tensor. At this stage the system is not closed since the stress tensor is yet to
be specified. Traditionally the idea has been to close this system by an empirically
postulated constitutive relation, such as

τd = −pI + µ(∇u +∇uT ) (21)

for simple fluids. Here we will develop numerical methods that bypass such empirical
constitutive modeling.

Another important component in the model is the boundary condition. Here we
will assume the standard no-slip boundary condition

u = u0 (22)

where u0 is the velocity of the boundary. The issue of boundary condition is another
important source of problems for multi-scale modeling, see [20]. But here we will skip
this issue.

4.2 The macro-scale solver and the needed data

As the macroscopic solver, we choose the projection method on a staggered grid [6].
Projection method is a fractional step method. At each time step, we first discretize
the time derivative in the momentum equation by the forward Euler scheme to obtain
an intermediate velocity field:

ρ
ũn+1 − un

∆t
= ∇ · τn (23)

where τn is the momentum flux. For the moment, pressure as well as the incom-
pressibility condition are neglected. Next the velocity field ũn+1 is projected onto the
divergence-free subspace:

ρ
un+1 − ũn+1

∆t
+∇pn+1 = 0 (24)

where pn+1 is determined by

∆pn+1 =
ρ

∆t
∇ · ũn+1 (25)
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Figure 3: Schematic of the spatial discretization of the continuum equa-
tions in (20). u is defined at (xi, yj+ 1

2

), v is defined at (xi+ 1

2

, yj), and p is

at the cell center (xi+ 1

2

, yj+ 1

2

). τ11 and τ22 are calculated at the cell center
indicated by circles, and τ12 is calculated at the grid points indicated by
squares.

usually with Neumann boundary condition.
The spatial discretization is shown in Figure 3. For integer values of i and j,

we define u at (xi, yj+ 1

2

), v at (xi+ 1

2

, yj), and p at the cell center (xi+ 1

2

, yj+ 1

2

). The

diagonals of the flux τ are defined at (xi+ 1

2

, yj+ 1

2

), and the off-diagonals are defined

at (xi, yj). The operators ∇ and ∆ are discretized by standard central difference and
the five-point formula respectively. The use of this grid simplifies the coupling with
molecular dynamics.

The data that need to be estimated from molecular dynamics are the stresses.
Here we will make a constitutive assumption, namely that the stress depends only
on the rate of strain. We do not need to know anything about the specific functional
form of this dependence.

4.3 The constrained micro-scale solver: Constant rate-of-

strain molecular dynamics

The key component in estimating the stress is to construct a constant rate-of-strain
ensemble for the MD. This is done through a modified periodic boundary condition
[20]. The main idea is to perform molecular dynamics using periodic boundary con-
dition, by the period itself is changing in time in such a way that its vertices solve
the ODE:

ẋ = Ax, (26)

where A is the rate of strain tensor. In the special case when A represents a pure
shear

A =





0 b 0
0 0 0
0 0 0



 (27)
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this boundary condition becomes simply the Lees-Edwards boundary condition [15]:
A constant shear profile is maintained by shifting the periodic copies of the simulation
box above and below in opposite directions according.

If this idea is used naively, one encounters the difficulty that the period box might
be severely deformed. This is easy to see in the special case of a extensional flow, in
which one side of the period box grows exponentially in time. A clever reinitialization
procedure has been developed to handle this difficulty [20].

The MD simulation keeps track of the positions and velocities of all particles as
functions of time, from which the momentum flux tensor can be calculated using the
Irving-Kirkwood formula (28):

τ(x, t) = −
∑

i

1
mi

(pi(t)⊗ pi(t))δ(xi(t)− x)

−1
2

∑

j 6=i

((xi(t)− xj(t))⊗ Fij(t))
∫ 1

0
δ(λxi(t) + (1− λ)xj(t)− x) dλ

(28)
where Fij(t) is the force acting on the i-th particle by the j-th particle. When (28)
is averaged over the simulation box, it gives

τ(t) = −
1

|Ω|

∑

xi∈Ω(t)

1

mi
(pi ⊗ pi)−

1

2|Ω|

∑

j 6=i

dij(xi − xj)⊗ Fij (29)

where in the first term the summation runs over particles inside the box, and in the
second term the summation is over all pairs of particles including their images. Here
dij is defined as

dij =















1, if xi,xj ∈ Ω,

0, if xi,xj /∈ Ω,

c, if only one of xi,xj in Ω

(30)

where 0 ≤ c ≤ 1 is the fraction of |xi − xj| being cut by the box. Therefore besides
contributions from particles inside the box, particles outside the box also contribute
to the stress.

(29) gives the instantaneous stress at the microscopic time t. To extract the
macroscopic stress, (29) is averaged over time to give an estimate for the macroscale
stress:

τ =
1

T − T0

∫ T

T0

τ(t)dt (31)

where T0 is some relaxation time.
The overall algorithm looks as follows at each macro time step:

1. Step 1. Calculate the needed stresses by constrained local MD simulations;

2. Step 2. Using the projection method and the computed stresses to get uk+1.

For numerical results computed using this algorithm, we refer to [20, 19].
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5 Chemical Kinetic Systems with Multiple Time

Scales

5.1 Statement of the problem

This last example is selected to illustrate issues for problems with multiple time scales.
We will discuss chemical kinetic systems modeled by discrete Markov chains. The
standard approach for modeling such systems is the stochastic simulation algorithm
(SSA), also called the Gillespie algorithm. Since the rate functions tyically have
exponential dependence on the activation energy, it is common for such systems to
exhibit many different time scales. These problems have received a great deal of
attention in recent years, and we refer to [10] for references and discussions of recent
work on this problem. Here for illustration, we will focus on the simplest situation of
problems with two separated time scales.

We begin with the general set-up. Assume that an isothermal system has NS

species of molecules Si, i = 1, . . . , NS, and there are MR reaction channels Rj, j =
1, . . . , MR. Let xi be the number of molecules of species Si. Then the state of the
system is given by the vector

x = (x1, · · · , xNR
) (32)

Each reaction Rj is characterized by a rate function aj(x) and a vector νj that de-
scribes the change of the state due to the reaction. We write

Rj = (aj, νj). (33)

The dynamics of the model is completely specified by the following rules:

1. Given the state x, the reactions are independent of each other on an infinitesimal
time interval of duration dt and the probability for the reaction Rj to happen
is given by aj(x)dt.

2. The state of the system after Rj is given by x + νj.

The standard computer implementation of such a model is given by the well-known
stochastic simulation algorithm (SSA) proposed in [13]. Let

a0(x) =

MR
∑

j=1

aj(x). (34)

Assume that the current time is t = tn, and the state of the system is x = xn. The
essential steps of SSA are the following:
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1. Generate independent random numbers r1 and r2 with uniform distribution on
the unit interval. Let

δtn+1 = −
ln r1

a0(x)
, (35)

and kn+1 to be the natural number such that

1

a0(x)

kn+1−1
∑

j=1

aj(x) < r2 ≤
1

a0(x)

kn+1
∑

j=1

aj(x). (36)

2. Update the time and the state of the system

tn+1 = tn + δtn+1 , xn+1 = xn + νkn+1
. (37)

Next we consider the case when the rates are divided into two groups (the general
case with more than two groups is treated in [10, 11]): One group corresponding to
the fast processes with rates of order 1/ε and one group corresponding to the slow
processes with rates of order 1. Here ε� 1:

a(x) =
(

as(x), af(x)
)

, (38)

where
as(x) =

(

as
1(x), · · · , as

Ms
(x)

)

= O(1),

af (x) =
(

af
1(x), · · · , af

Mf
(x)

)

= O(1/ε).
(39)

in dimensionless units. The corresponding reactions and the associated state change
vectors can be grouped accordingly:

Rs = (as, νs), Rf = (af , νf ). (40)

As a simple example, consider the system:

S1

af
1−→
←−
af
2

S2, S2

as
1−→
←−
as
2

S3, S3

af
3−→
←−
af
4

S4, (41)

with reaction channels given by

af
1 = 105x1, νf

1 = (−1, 1, 0, 0);

af
2 = 105x2, νf

2 = (1,−1, 0, 0);

af
3 = 105x3, νf

3 = (0, 0,−1, 1);

af
4 = 105x4, νf

4 = (0, 0, 1,−1);

as
1 = x2, νs

1 = (0,−1, 1, 0);

as
2 = x3, νs

2 = (0, 1,−1, 0).

(42)

There are a total of 4 species and 6 reaction channels, with 4 fast reactions and 2
slow ones. We can think of ε as being 10−5 for this example.
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5.2 The macro-scale solver and the data to be estimated

For problems of this type, direct application of SSA will result in time steps of size ε
(the total rate a0(x) in (34) is of order 1/ε) with a total cost of order 1/ε if we want
to advance the whole system through a time interval of order unity. Most of the cost
will be spent on the fast reactions, which are often of little interest in these cases.
Indeed for such systems, we are usually interested in the slow processes since they
are the rate-limiting steps. Here we propose a modified SSA that captures the slow
processes at a cost that is independent of ε, and therefore much less than that of the
direct SSA when ε� 1. The underlying assumption is that the fast processes are in
equilibrium over the slow time scale.

The macro-scale solver is a SSA for the slow reactions only. The data that need
to be estimated are the effective rates, given that the fast processes are in quasi-
equilibrium.

5.3 The micro-scale solver and the overall algorithm

The effective rates for slow reactions are estimated using another SSA or several inde-
pendent replicas of the SSA, but using only the fast reactions. The overall algorithm
takes the form of a nestd SSA: The outer SSA is on the slow processes only, but uses
modified slow rates. The inner SSA is on the fast processes only: it uses the original
fast rates and serves to give the modified slow rates. Let t = tn, x = xn be the current
time and state of the system respectively. Given (tn, xn), do:

1. Inner SSA

Run N independent replicas of SSA with the fast reactions Rf = (af , νf ) only,
for a time interval of Tf . During this calculation, compute the modified slow
rates: For j = 1, · · · , Ms, these are

ãs
j =

1

N

N
∑

k=1

1

Tf

∫ Tf+T0

T0

as
j(xk(τ))dτ, (43)

where xk(τ) is the k-th replica of the auxiliary fast process at virtual time τ
whose initial value is xk(0) = xn, T0 is a parameter we choose in order to
minimize the effect of the transients in the auxiliary fast process.

2. Outer SSA

Run one step of SSA for the modified slow reactions R̃s = (ãs, νs) to generate
(tn+1, xn+1) from (tn, xn).

Then repeat.
Note that the number of replicas N can be taken to be one in the above algo-

rithm, but it is advantageous to take a large N since the Inner SSA can be trivially
parallelized.
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Examples of results using this nested SSA algorithm and comparison with the
direct SSA algorithm can be found in [10, 11].

This is an example of the seamless HMM, i.e. no specification of slow variables is
needed and no explicit constraints are applied on the inner SSA. We should remark
that there are very few examples for which seamless HMM works. The reasons behind
the present example is analyzed in [11].

5.4 Slow variables and effective dynamics

Even though the formulation of the nested SSA does not require explicit identification
of the slow variables and the effective dynamics over the slow time scale, to understand
why and how the algorithm works, we do need to understand these issues.

First we discuss the observables, which are functions of the state variable x. By
definition, slow observables are conserved quantities during the fast reactions, i.e.
v(x) is a slow observable if for any x ∈ X and any state change vector νf associated
with the fast reactions one has

v(x + νf ) = v(x). (44)

This means that the value of the slow observable v(x) is unaffected by the fast reac-
tions. To find a general representation of such observables, we consider special slow
observables which are linear functions that satisfy (44). We call such slow observables
slow variables. It is easy to see that v(x) = b · x is a slow variable if

b · νf = 0, (45)

for all νf . Let b1, b2, . . . , bJ be a set of basis vectors that satisfy (45). Define

yj = bj · x for j = 1, . . . , J. (46)

Then y1, y2, · · · , yJ defines a complete set of slow variables, i.e. all slow observables
can be expressed as functions of y1, y2, · · · , yJ . For the example considered earlier, it
is easy to see that both x1 + x2 and x3 + x4 are conserved during the fast reactions,
i.e. y1 = x1 + x2 and y2 = x3 + x4 are the slow variables of that system.

We can now put the quasi-equilibrium assumption in precise terms. Fix the slow
variables y and consider the virtual fast process defined by retaining only the fast
reaction channels [4]. Two important conclusions can be drawn for this process. The
first is that the slow variables are held constant. The second is that this system
approaches a unique equilibrium state (which depends on the value of y) on a time-
scale of order ε. This equilibrium state is the desired quasi-equilibrium, which we
denote by µy(x). The rates for the effective slow process are obtained by averaging
the slow rates with respect to this quasi-equilibrium:

āj(y) = 〈aj(x)〉y ≡
∑

x∈X

aj(x)µy(x). (47)
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It is obvious that the effective rates are only functions of y. The effective dynamics
is completely specified by

R̄ = (Rs, ā(y)) . (48)

It is shown in [11] by singular perturbation analysis that the original dynamics con-
verges to the above effective dynamics with an error of order O(ε).

5.5 Convergence and efficiency of the nested SSA

If we knew ā(y) = (ā1(y), · · · , āMs
(y)) explicitly, we could have carried out SSA using

these rates. This would capture the process on the slow time-scale, which is what
we are interested in. For convenience, we will call such a procedure “averaged SSA”.
Unfortunately we usually do not have an explicit expression for the effective rates
(47). The nested SSA proposed above is a way of getting approximate values of these
rates “on-the-fly”.

To see why this algorithm should work, it is clear that the only difference between
the nested SSA and the averaged SSA is that the averaged SSA uses the rates in
(47), whereas nested SSA uses the rates in (43). However, by ergodicity we have that
ã converges to ā for when Tf and N goes to infinity. Therefore the results of the
two algorithms also become closer and closer for large Tf and N . Quantitative error
estimates can be obtained. The details are given in [11]. Among other things, it is
proved in [11] that

E|āj − ãj| ≤ C
( e−αT0/ε

1 + Tf/ε
+

1
√

N(1 + Tf/ε)

)

, (49)

for some constants C and α which are independent of ε. Here E denotes expectation
with respect to the statistics of the virtual fast process in the Inner SSA. The first term
on the right hand-side of (49) measures the deviation from the quasi-equilibrium if the
inner SSA is run only for a time duration of Tf , starting at T0. α measures the rate of
convergence for the virtual fast process to equilibrium. The second term measures the
sampling error from using time and ensemble averaging on a time interval of duration
Tf with an ensemble of N replicas.

Let us now estimate the cost of the nested SSA. For simplicity we will take T0 = 0
here and also in our numerical examples. One feature of (49) is that this estimate
depends on the ratio Tf/ε rather than Tf alone. This means that, when ε � 1, we
can achieve a small error on ãj by choosing Tf/ε� 1 and yet have Tf � 1 (remember
that we have assumed that the time-scale for the slow process is of order 1). This is
the very reason why the nested SSA is more efficient than a direct SSA. To quantify
this, suppose that we want to compute the results within an error tolerance λ. To
control each term in (49) by λ, the optimal choice of parameters is:

N = Tf/ε = 1/λ2. (50)
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Then the cost for evolving the nested SSA for a unit time is estimated to be:

cost = ãs
0 ×Naf

0Tf/ε = O
(

1/λ2
)

, (51)

which is independent of ε.

6 Conclusions

Let us now summarize.

6.1 Main features of HMM

HMM is a top-down framework: It is based on the macroscopic solver and uses the
microscale model as a supplement. Its two-component procedure offers a number of
interesting features, including:

1. The ability to make maximum use of our knowledge on all scales. For exam-
ple, when choosing the macroscale solver, we may take advantage of what is
known at the macroscale, such as conservation form, variational structure, etc,
as well as the nature of the physical process such as shock formation, phase
transformation.

2. The flexibility to make maximum use of the special features of the problem.
Time scale separation, for example, is made use of by the fact that satisfac-
tory approximation for the needed data can be obtained by carrying out the
microscale solver on relatively short time intervals.

The latter is really the key to multi-scale modeling: Our aim is not to construct
general purpose methods, but rather to construct particularly efficient methods
by taking advantage of the special features of the problem.

6.2 Other general methodologies

Domain decomposition and adaptive model refinement are two popular and general
methodologies that have been explored for problems where microscopic models are
needed in the vicinity of localized defects, such as cracks or contact lines.

“Equation-free” has been proposed as another general methodology for first-principle-
based constitutive modeling [14]. The philosophy of “equation-free” is the same as
that of concurrent coupling, namely the needed constitutive information is not com-
puted beforehand, but rather “on-the-fly” as the computation proceeds. The technical
details of “equation-free”, which are embodied in the “gap-tooth schemes”, “patch
dynamics”, etc, are not sufficient at this point to allow us to discuss their merits when
applied to realistic problems. In the simplest cases such as stiff ODEs, “equation-
free” becomes quite similar to HMM. But for more complicated situations such as
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stochastic ODEs, oscillatory ODEs, or for problems with spatial microstructures, it is
unclear how “equation-free” would proceed in order obtain acceptable accuracy and
at the same time, beat the brute force microscopic solvers in terms of efficiency. See
[9].

6.3 The fiber bundle viewpoint

Finally, it is worth emphasizing that the conceptual framework of HMM is very sim-
ilar to that of a fiber bundle. It is true that for most problems, both the microscopic
and the macroscopic variables are defined on the same physical space. Domain de-
composition and adaptive model refinement methods rely on this fact. For HMM,
it is helpful to think about the local microstructure as if it is defined on a different
space, the fibers over the macroscopic space. Indeed, under the framework of HMM,
the microscale computations carried out over the different macroscale locations do
not communicate with each, except through the macroscale solver. This is very much
reminiscent of the structure of fiber bundles. By thinking of the microstructure as
been defined in a virtual space, we are naturally led to numerical algorithms which
are free of the limitations associated with filling up macroscale space and time by
the microscale grid points and time steps, and this is the reason why HMM enables
us to design numerical algorithms that are much more efficient than the brute force
microscale solvers.
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