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ABSTRACT 
Until now, most research work on uncertainty assumes that the demand and price are 
independent because of the difficulty in computing the bivariate integral originated from the 
correlated demand and price. This can cause significant discrepancies in revenue calculation 
and hence yield sub-optimal planning strategies. This paper presents a novel approach to 
handle correlated and truncated demand and price uncertainties. To compute the expectation 
of plant revenue, which is the main difficulty for a planning problem under uncertainty, we 
use a bivariate normal distribution to describe demand and price. The double integral for 
revenue calculation is reduced to several single integrals after detailed derivation. The 
unintegrable standard normal cumulative distribution function in the single integrals is 
approximated by polynomial function. Case studies show that, for a large enough CV of a 
product, assuming independent price and demand may underestimate the revenue by up to 
20%. Since the real world demands or prices vary in limited ranges, integrating over the 
whole range of a normal distribution, which some research has done, may give incorrect 
results. This paper thus approximates a bivariate double-truncated normal distribution for 
demand and price. The influence of degree of truncation on plant revenue is studied. 
To handle possible unmet customer demands, the hard-to-specify penalty functions of the 
two-stage programming are avoided and replaced by two of the decision maker’s service 
objectives, namely the confidence level and fill rate objective. Confidence level or the type I 
service level, which is the probability of satisfying customer demands, is commonly used in 
chance-constrained programming. However, fill rate or the type II service level, which is the 
proportion of demands that are met from a plant, is a greater concern of most managers. In 
this paper, fill rate is efficiently calculated using the derived formulae and the maximal plant 
profit that satisfies certain fill rate objectives can thus be obtained. Case studies show that a 
planning strategy that satisfies certain confidence level objectives might be too generous 
compared to a strategy that satisfies a fill rate objective. Case studies including refinery 
planning problems were used to illustrate the proposed approach. The proposed approach can 
be generally applied for modeling other chemical plants under uncertainty. 
 
1. INTRODUCTION 
Due to the fluctuating product demands, volatile raw material prices, and other changing 
market conditions, many parameters in a planning/scheduling model are uncertain. Upon 
realization of uncertainty, a schedule built on a deterministic approach will be non-robust or 
in some cases even infeasible1,2. Since Dantzig’s seminal work on uncertainty appeared3, 
research on uncertainty has been attracting the attention of numerous researchers. 
Most research work4,5 on uncertainty assumes that the demand and price are independent 
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because of the difficulty in computing the bivariate integral originated from the correlated 
demand and price. However, by regressing real world demand and price data from EIA (the 
U.S. Energy Information Administration) 6, the correlation coefficient between gasoline (New 
York Harbor Gasoline Regular) price and its demand is 0.44 for the year 2003 to 2004. For 
world crude oil in 2003 and 2004, the correlation coefficient is 0.30. These data show that the 
demand and price are far from independent. Considering the correlation between the price 
and demand and studying its influences on plant revenue is the main concern to be addressed 
in this paper. 
 
2. Revenue Calculation Methods 
The computation of the revenue of a plant involves uncertain variables such as market 
demand and product price. How to compute the expectations of uncertain functions 
introduced by these uncertain variables generates the main difficulty in stochastic 
rogramming7. Several approaches have been used in the literature to compute these 
expectations8. Li et al5 categorized different revenue calculation approaches into three types 
which include: A) Minimizing cost. The objective is to minimize the total costs and the 
computation of plant revenue is avoided. B). Maximizing profit I. The revenue is calculated 
by the product of the market price and the amount of the product produced by the plant. In 
this approach, it is assumed that a product can always be absorbed by the market. C). 
Maximizing profit II. The revenue is calculated by the product of the market price and the 
market demand. In this approach, it is assumed that the amount of a product is always greater 
than the market demand. However, the assumptions in B) and C) are not always true in the 
real world. As pointed out by Petkov et al4 and Li et al5, in many cases, if the market demand 
is less than the product amount, only part of the product can be sold; otherwise if the market 
demand is higher than the product amount, then only part of the demand can be satisfied. The 
revenue should then be calculated by: 

c x

Revenue E[ C*min(P, x)]= ∑∑                           (1) 

where C is the price, P is the production rate of the product and x is the demand. 
 
3. Derivation of Revenue Calculation for Correlated price and demand 
The derivations in most of the works in the literature4,5,9 are based on the assumption that the 
demand and price are independent and the price is assumed to be a constant. This assumption 
may introduce significant discrepancy in revenue computation due to correlated price and 
demand for a real world plant. In this section, the formulae for plant revenue computation 
considering the correlation between price and demand are derived. 
In stead of a constant, the price is assumed to conform a normal distribution. The price, c, and 
demand, x, is further assumed to conform a two-dimensional normal distribution whose 
probability density function is represented by: 
 



2 2(c c) 2 (c c)(x ) (x )1 [ ]2 2 2xc1 2(1 ) xc(c, x) e
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− ρ − −θ −θ− − +σ σ−ρ σ σϕ =
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where, c  is the mean of price, σc is the standard deviation of price. θ is the mean of demand 

and σx is the standard deviation of demand and ρ is the correlation coefficient. The normally 
distributed price and demand are independent if ρ=0. 
 

Combining eqs (1) and (2), the revenue is 
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After detailed derivation, A can be reduced to A1 to A5 and C can be reduced to C1 and C2. 
The revenue is computed by 
 

Revenue = A1 + A2 + A3 + A4 + A5 + B – C1 – C2       (3) 
Where, 
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In the above equations,Φ(.) is the standard normal cumulative function: 
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4. Derivation of Revenue Calculation for Correlated and Truncated price and demand 
Besides the independence assumption, in the derivation of the works in the literature4,5, the 
integration ranges of price and demand are assumed to be (-∞, +∞), which is not the case in 
the real world. This may bring further discrepancy in revenue computation. To handle this, 
the formulae for truncated price and demand are derived in this paper and the influence of 
degree of truncation on revenue computation is studied using some case studies. 
Now suppose that the range of demand is [XL, XU], where -∞ < XL < XU < +∞ and the range 
of price is [CL, CU], where -∞ < CL < CU < +∞. Then the pdf (probability density function) of 
BBTN (Bivariate Bi-Truncated Normal distribution) is: 
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where, (c, x)ϕ  is the pdf of the two-dimensional normal distribution function defined by eq 

(2), LU U U L LF F(x ,c ) F(x ,c )= −  and 
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The plant revenue is then 
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Here, the value of P should locates in [XL, XU]. 
After detailed derivation for each term, the revenue can be computed by 
 

Revenue = AT1 + AT2 + AT3 + AT4 + AT5 + CT1 + CT2       (5) 
Where, 
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5. Approximation of the standard normal cumulative function 
In the equations derived in the above sections, there is an unintegrable term, Φ(.). To 
facilitate the revenue computation, we use some simpler functions to approximate Φ(.). There 
exist some accurate approximations to the standard normal cumulative function in the 
literature10. However, those approximations are still too complicated to integrate. In this 
paper, a seventh-order polynomial function is used to approximate Φ(.). 

3 5 7(x) a b* x c*x d * x e* xΦ = + + + +                (6) 

When x is in the range of [-3, 3], the coefficients in eq (6) are: a, 0.5; b, 0.3942473009; c, 

-0.058125270; d, 0.0056884266 and e, -0.000228133. 
 
6. Type I and II service levels 
Two types of service levels (or customer satisfaction levels) are commonly used in the 
industry. The Type 1 service level (usually also called the confidence level) is the probability 
of not stocking out in all scenarios or horizons11. The Type 2 service level (also often called 
the fill rate) is the proportion of demands that are met from a plant11. The Type 1 service 
level is widely applied in chance constrained programming up to now. However, the Type 1 
service level is not how service is interpreted in most applications11. The type II service level 
is a greater concern of most managers in industry5,11. The difference of Type I and II service 
level can be found in Nahmias’ work11. 

To apply Type I service level, the following constraint should be added in the model5,9: 

( )Pr D d ,≥ = α  



where D is the production rate (no inventory) or the deliverable amount (with inventory), d is 
the market demand. α is the Type 1 service level or confidence level. The above constraint is 
transformed to the following by applying chance constrained programming5,9: 
 

1D ( ).−≥ Φ α                                      (7) 

In the above constraint, 1−Φ is the known reverse cumulative distribution function of the 

product demand. 
 
7. Derivation of truncated loss function 

Loss function, defined as
P

LF(P) (x P) (x)dx
∞

= − ρ∫  (for non-truncated and continuous 

distribution), represents the amount of unmet demand (the backorder level) of a plant facing 
uncertain demand12. It is essential to compute value of loss function to apply the Type II 
service level in a model. 
For non-truncated and normally distributed demand, loss function has been effectively 
applied and approximated to compute the actual fill rate in the literature5. In this paper, we 
extend the research to cases when demand is truncated and normally distributed. 
Again, we assume that the range of demand is [XL, XU]. Then the bi-truncated density 
function of demand x is: 
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where, φ(x) is the standard normal density function and Ф(x) is the standard normal 

cumulative function and U L
BTN x
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Thus, the bi-truncated loss function, BTNLF (P) , is: 
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When the demand conforms to Left Truncated Normal Distribution, We have UX → +∞  and 

XUZ → +∞ . Then 
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BTN LTN x XL
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Thus the left truncated loss function, LTNLF (P) , becomes, 
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When the demand conforms to Right Truncated Normal Distribution, We have LX → −∞  

and XLZ → −∞ . Then 
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Thus the right truncated loss function, RTNLF (P) , becomes, 
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For Non-Truncated normal distribution, that is, UX → +∞  and LX → −∞ , we have 

XUZ → +∞  and XLZ → −∞  and BTN xσ → σ . Thus the eq (8) is reduced to 

x XP XP XPLF(P) { (Z ) Z [1 (Z )]}= σ φ − − Φ  

The above formula can also be found in the literature4, 5. 
 



8. Case Study 
Case studies are used to illustrate the influences of correlation and truncation of price and 
demand on plant revenue. The problem is taken from the case 1 of Li et al.5. Figure 15 shows 
the configuration of the problem. MTBE and GASO (gasoline) enter the gasoline blending 
(GB) unit to produce two products: 90# (GASO’90) and 93# (GASO’93) gasoline. The price 
of GASO and MTBE are 1400 and 3500 Yuan/tom, respectively. The price of 90# and 93# 
gasoline are 3215 and 3387 Yuan/ton, respectively. The octane number of GASO and MTBE 
are 70 and 101, respectively. The octane number of 90# and 93# gasoline are 90 and 93, 
respectively. The blending requirement is that the octane number of each product should 
equal or be greater than the required octane number of that product. No inventory is 
considered and the overproduced products are assumed to be valueless. 

8.1. Non-truncated and correlated case 

In this case, we consider the influence of correlation coefficient on plant revenue at different 

CVs (Coefficient of Variation, Standard  DeviationCV
mean

= ). The means of demand for 90# and 

93# gasoline are 50 and 70 tons, respectively. The standard deviation of 90# and 93# gasoline 
at different CVs are listed in Table 1. The standard deviation of 90# and 93# gasoline prices 
at different CVs are assumed to be fixed at 600 and 620 Yuan/ton, respectively. 
 

 CV 
Products 0.2 0.3 0.5 

90# gasoline 10 15 25 
93# gasoline 10 20 35 

 
Table 1 Standard deviation of products at different CVs 

 
The revenues at different correlation coefficients at CV=0.5 are listed in Table 2. It can be 
seen that, the revenue at correlation coefficient of 0.4 (near the real world data) is 21.1% 
higher than the revenue calculated by assuming independent demand and price (correlation 
coefficient=0.0). That means, if for a large enough CV of a product, assuming independent 
price and demand may underestimate the revenue by up to 20%. 
 

GASO’90

GASO’93GASO 

 

MTBE

G90

G93

M90

M93

Figure 1. The configuration of the problem 

Gasoline Blending Unit



Correlation coefficient Revenue, Yuan Difference,% 
0 10097.5 0.0 

0.1 10589.83 4.9 
0.2 11096.87 9.9 
0.3 11638.74 15.3 

0.4 12225.64 21.1 

0.5 12853.69 27.3 
 

Table 2 Revenue at different correlation coefficients (CV=0.5). 
 
From other cases, we also found that, as the standard deviation of price increases, the revenue 
increases slightly. However, as the standard deviation of demand increases, the revenue 
decreases significantly. The revenue difference between the independent and correlated cases 
depends on the CV of products. In the problem studied here, if the CV of a product takes 
value of 0.2 and correlation coefficient is 0.4 to 0.5, the revenue difference is about 2%. This 
difference is about 5% for CV of 0.3 (According to the regressed data from EIA, the 
correlation coefficient between demand and price is around 0.4). 
 

8.2. Truncated and correlated case 

Integrating over the whole range of a normal distribution may give incorrect results to 
revenue calculation. The formulae derived for bivariate double-truncated normal distribution 
are applied in the model. Some results are shown in Tables 3 and 4 (the product production 
rates of truncated cases are fixed to those of the non-truncated case for comparison). In Table 
3 (CV=0.2), it can be seen that, if the price and demand vary inside two standard deviations 
of their mean values, integrating over the whole range will underestimate the revenue by 2 to 
3%. If the price and demand vary inside one standard deviation of their mean values, 
integrating over the whole range will underestimate the revenue by about 12%. The revenue 
difference between truncated and non-truncated becomes much more significant for large 
enough CV. In Table 4 (CV=0.5), integrating over the whole range will underestimate the 
revenue from 20% up to 130%. 

 Integration Range of 
Non-truncated case Integration Ranges of Truncated Cases 

Correlation 
coefficient (-∞, +∞) 

(mean+/-2*standard 
deviation) 

(mean+/-standard 
deviation) 

0 38685.9 39847.5837 43513.6285 
0.1 38851.1635 39948.7 43772.7047 
0.2 39021.0171 40107.0 43958.1995 
0.3 39202.2534 40418.5 44166.1383 
0.4 39398.5284 40792.3 44369.2797 
0.5 39608.5912 39418.8 44445.1523 

Table 3. Revenues of truncated and non-truncated cases (CV=0.2) 



 

 Integration Range of 
Non-truncated case Integration Ranges of Truncated Cases 

Correlation 
coefficient (-∞, +∞) 

(mean+/-2*standard 
deviation) 

(mean+/-standard 
deviation) 

0 10097.5 14986.6021 23935.1191 
0.1 10589.8324 15234.4 24545.507 
0.2 11096.8739 15556.8 25029.963 
0.3 11638.7364 16067.2 25457.6564 
0.4 12225.6447 16693.6 25907.5828 
0.5 12853.6936 15504.5 26286.4896 

 
Table 4. Revenues of truncated and non-truncated cases (CV=0.5) 

 
9. Conclusion 
In this paper, the correlation between price and demand as well as their integration ranges are 
studied. Theoretical derivations are performed and several case studies are developed to study 
the influences of correlation and truncation on plant revenue. 
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