
 1

Improved genetic algorithms for deterministic optimization and optimization under
uncertainty-Part I: Algorithms Development

Xu, W. and Urimila M. Diwekar*

Center for Uncertain Systems, Tools for Optimization and Management (CUSTOM)
Vishwamitra Research Institute, Westmont, IL 60559

*To whom correspondence should be addressed. E-mail: urmila@vri-custom.org Phone:
+1 630 515 8772

Abstract
This paper proposes three new variants of genetic algorithm to solve deterministic and
stochastic optimization problems. In these algorithms, a new and efficient sampling
technique, Hammersley sequence sampling (HSS), is utilized in the initial population
generation and population updating. Additionally for stochastic optimization problems,
HSS is also used for propagation of parametric uncertainties through the model. The
better uniformity properties of HSS are exploited in developing the efficient genetic
algorithm (EGA) to solve deterministic optimization problems. A case study has been
performed in this work to show that EGA has better performance than its traditional
counterpart, in which the random number generator from Monte Carlo sampling is
commonly employed. For stochastic optimization problems, the Hammersley stochastic
genetic algorithm (HSGA) coupled with better confidence interval of the samples has
been introduced. Case studies show that the new algorithm outperforms: 1) the stochastic
genetic algorithm (SGA) which employs Monte Carlo sampling, and 2) the efficient
stochastic genetic algorithm (ESGA), where HSS is used together with Monte Carlo
confidence intervals. This is due to the uniformity and faster convergence properties of
Hammersley sequence sampling utilized in HSGA. The exercise demonstrates that
HSGA has the best performance while SGA displays the worst performance. The second
part in this series of papers describes two solvent selection models, and solvent selection
with and without uncertainty is solved using the new algorithms.
Keywords: Hammersley Sequence Sampling, Efficient Genetic Algorithm, Stochastic
Genetic algorithm, Hammersley Stochastic Genetic Algorithm.

1. Introduction
Many optimization problems, which include a large number of continuous or discrete
design variables fall into the category of integer programming (IP) and mixed integer
nonlinear programming (MINLP). Branch and bound (BB), generalized bender’s
decomposition (GBD), and outer-approximation (OA) (Diwekar, 2003) are generally
used for solving IP and MINLP problems. However, problems occur when: 1) functions
do not satisfy convexity conditions, 2) systems have large combinatorial explosion, or 3)
the solution space is discontinuous. One probabilistic optimization technique named
evolutionary algorithm (EA), that has been developed based on Darwin’s natural
selection and Mendel’s genetics, provides an alternative to the mixed integer
programming techniques like the BB, GBD and OA. The class of evolutionary algorithms
includes genetic algorithms (GA) (Holland, 1975); genetic programming (GP) (Koza,
1992); evolutionary programming (EP) (Fogel et al. 1966); and evolutionary strategy
(ES) (Rechenberg, 1973; Schwefel, 1995). Among all the evolutionary algorithms, GA is

 2

the most widely used. GA was first introduced by Holland (1975). It has been receiving
increased attention due to a series of successful applications in different disciplines like
biology, medicine and different branches of engineering (Tarafder et al., 2004)
The basic idea of GA is to start from a population instead of a single point in the potential
solution space of a specific problem, and allow that population to evolve from generation
to generation by genetic operators like selection, crossover, and mutation until the
stopping criteria are satisfied. In the evolving process, GA uses a structured yet
randomized information exchange to form a search direction. The behavior of GA is
characterized by a balance between exploitation and exploration. This balance is strongly
affected by strategy parameters like population size, crossover and mutation rate as well
as the mechanism employed for: 1) choosing initial population, 2) representing
individuals and 3) performing evolution. The improvements proposed here are based on
both adaptation of these features and incorporation of problem-specific properties similar
to a scheduling problem. A number of modifications arising from the above
considerations have been developed in the last several decades to obtain better
performance such as real number encoding (Michalewicz, 1996), simulated binary
crossover operator (SBX) (Deb and Agrawal, 1995), parameter adaptation (Herrera and
M. Lozano, 1996), and hybrid genetic algorithm (HGA) (Özdamar, 1999).
In this paper, a new strategy considering the improvements on population diversity and
uniformity of random operations is proposed by applying a new sampling mechanism,
Hammersley sequence sampling (HSS) (Diwekar and Kalagnanam, 1997), to both
deterministic optimization and optimization under uncertainty problems. This new
sampling mechanism has been shown to exhibit better uniformity over the multivariate
parameter space. Furthermore, it has also been proven that the number of samples
required to converge is less than the crude Monte Carlo sampling (MCS) and the variance
reduction techniques such as latin hypercube sampling (LHS) (Iman and Conover, 1982).
Genetic algorithm especially benefits from these features, since the calculation of cost
functions is expensive due to the fact that it starts from a population instead of a single
point.
2. Overview of genetic algorithm
The Genetic Algorithm was first developed by Holland (Holland, 1975). In general, there
are five components in it (Michalewicz, 1996).

• A genetic representation of solutions to the problem.
• A way to create an initial population of solutions.
• An evaluation function rating solutions in terms of fitness.
• Genetic operators that generate new individuals.
• Values for the parameters of genetic algorithms.

The general procedure of genetic algorithms can be summarized as follows:
At t = 0,

• Generate initial population P(t).
• Evaluate P(t).

 While termination condition is not satisfied, do
• Recombine P(t) to generate new individuals, i.e., children C(t).
• Evaluate C(t).
• Select P(t + 1) from P(t) and C(t).
• Set P(t) = P(t + 1).

 3

where P(t) is parent, C(t) is children and t is generation. Encoding plays an important role
in genetic algorithm. The original GA uses binary encoding. But with increasing
utilization of GA in more complex problems, new encoding methods have been
developed, such as real-number encoding, integer or literal permutation encoding and
general data structure encoding (Gen and Cheng, 2000). The initial population P(0) can
be chosen heuristically or randomly. If it is chosen randomly, a corresponding sampling
technique like Monte Carlo sampling (MCS) method is needed to propagate the initial
population. To develop the next generation, genetic operators recombine the old
generation to form a new one. Selection, crossover, and mutation are three operators
generally used. Selection is a process in which the individuals selected based on their
fitness are copied to the next generation. In this process, fitter solutions have a higher
chance to contribute to the next generation while the unfit string patterns are phased out.
Selection must work to strike a balance between selection pressure and population
diversity. Selection plays an important role in exploitation, while crossover and mutation
play important roles in exploration. The crossover operator randomly exchanges parts of
the genes of two parents to generate two new children. Crossover serves two
complementary search functions. First, crossover can provide new information about the
hyper-planes already represented earlier in the population. By evaluating new solution
strings, GA gathers further knowledge about these hyper-planes. Second, crossover
introduces representatives of new hyper-planes into the population. If this new hyper-
plane is a high-performance area of the search space, the evaluation of new more-fit
population will lead to further exploration in this subspace. The mutation operator
performs a random gene change. A low level of mutation serves to prevent any given bit
position from remaining fixed indefinitely to a single value in the entire population, while
a high level of mutation essentially yields a random search.
Termination criteria can be specified as the permissible maximum number of generations
or an acceptable approximated solution. The evolution process can also be terminated
when there is no obvious change of best individuals found after a fixed number of
generations. Genetic algorithm parameters like population size, crossover ratio, and
mutation ratio are key factors in the trade-off between exploitation and exploration
(Holland, 1975).
3. Sampling method.
Monte Carlo Sampling, latin hypercube sampling (Iman and Conover, 1982), and
importance sampling (Dantzig and Glynn, 1990) are widely used sampling techniques.
Recently, an efficient sampling technique called Hammersley sequence sampling (HSS),
based on Hammersley points has been developed, which uses an optimal design scheme
for placing sampN points on a k-dimensional hypercube more uniformly. This scheme
ensures that the sample set is more representative of the population, showing better
uniformity in the multi-dimensional uncertain surface compared to Monte Carlo, latin
hypercube, and its variant, the median latin hypercube sampling (MLHS) techniques. The
main reason for this is that the Hammesley points which are one of the minimum
discrepancy designs provide an optimal design for placing sampN points on a k-
dimensional hypercube. The sampling results on a unit square using MCS technique and
HSS technique are shown in Fig. 1. It shows that samples generated by HSS technique
achieves better uniformity and results in faster convergence to the “true” mean, variance,
or fractiles (Diwekar and Kalagnanam, 1997).

 4

4. Hierarchical improvements of Genetic Algorithm.
The hierarchical improvements to the GA for both deterministic optimization and
stochastic optimization cases include the following aspects: 1) efficient genetic algorithm
(EGA). 2) efficient stochastic genetic algorithm (ESGA), and 3) efficient Hammersley
stochastic genetic algorithm (HSGA). All of the three improved variants above are based
on application of the HSS sampling technique, similar to the work on the improvements
to simulated annealing by employing HSS (Kim and Diwekar, 2002).
4.1. Efficient genetic algorithm.
4.1.1. Overview.
Population diversity plays an important role in the performance of genetic algorithm. The
uniformity property of the HSS technique can be used in this step to avoid initial
populations clustered in a small region of the potential solution space. Applying HSS
technique in selection, crossover and mutation rather than random probability functions
in these operations results in additional improvements. Generally, these random
probabilities generated by pseudo-random number generators like crude Monte Carlo are
uniformly distributed. Since HSS method shows more uniformity in generating samples
over k-dimensional hypercube, its application here ensures a more uniform exploration
and exploitation of solution space instead of a bias towards a particular region of solution
space or chromosome, which would trap the genetic algorithm in a local optima. Another
important issue that needs to be addressed here is that it is imperative that one maintain
the k-dimensional uniformity property of HSS by generating N quasi-random numbers
needed in each generation simultaneously for all probabilities instead of one quasi-
random number at each time for N times in each generation. Efficient genetic algorithm
(EGA) is developed by implementing these new features. The algorithm is summarized
as follows:

At t = 0,
• Use HSS method to generate initial population P(t), keeping the k-

dimensional uniformity property intact.
• Evaluate P(t).

 While termination condition is not satisfied,
• Recombine P(t) to generate C(t). Use HSS method to generate random moves

in selection, crossover and mutation steps, keeping the k-dimensional
uniformity property intact.

• Evaluate C(t).
• Select P(t + 1) from P(t) and C(t).
• Set P(t) = P(t + 1).

The following three examples are used in this paper to evaluate the performance of the
newly developed genetic algorithm EGA.

Example 1 : () ∑
=

=
ND

i
iyyf

1

2 ,
(1)

Example 2 : () () ()() ()(){ }∑
=

−+−+−=
1

1

2
3

2
2

2
1 333

y

i
iyiyyyf ,

(2)

Example 3 : () ()∏∑∑ −+⎟
⎠
⎞

⎜
⎝
⎛ −=

ND

i
i

ND

i
i

ND

i
i yy

ND
ixyxf π4cos, 2

2

,
(3)

 5

where x denotes a vector of continuous variables, y denotes a vector of discrete variables
and ND is dimension of the examples. Example 1 is a multi-dimensional parabolic
function (Salazar and Toral, 1997) that has one global optimum at zero for all decision
variables equals to zero. The second example, a pure combinatorial problem (Painton and
Diwekar, 1994) that has one global minimum zero when all 1y , ()iy2 , ()iy3 are equal to
3. The third example is a MINLP problem that has one global minimum -1.
4.1.2. Effect of random seed on efficient genetic algorithm.
Theoretically, the random seed which is used to propagate samples, should have no
impact on the performance of HSS. However, the existence of limitation on sample size
makes it impossible for the samples to cover the whole search space. This limitation
directly induces a non-overlapping distribution of different set of samples on the k-
dimensional space, though each set of sample is uniformly distributed. From Fig. 2 we
can observe the difference in the two sets of samples generated from different random
seeds. The performance of EGA depends on the specific value of each sample, and hence
will have a different convergence path due to the different set of samples used. The effect
of random seed is tested on example (3) and summarized in Table 1, which shows that a
different random seed for HSS produces a different convergence performance. There are
already several parameters like population size, crossover rate etc. that need to be tuned
to reach the best performance. The existence of additional parameters would make
genetic algorithm less flexible. To increase the diversity of new populations and decrease
the effect of different seeds, the strategy of parameter adaptation (Holland, 1975; Beyer,
1996) is used for random seed adaptation. Since there is no relationship between
performance and random seed value, changing random seed schematically at each
generation would not outperform a randomly changing seed value. To simplify the
algorithm while keeping the random seed as diverse as possible, the dynamic seed is
used, which for simplicity takes the value of the system time. It shows that it may not
ensure the best performance, but it is better than the average case. And further, it avoids
the time-consuming testing process.
4.1.3. The efficiency improvement of EGA.
To demonstrate the efficiency improvement of EGA over Monte Carlo genetic algorithm
(MGA), the three examples (1), (2), and (3) have been used as case studies. Table 2
presents the comparison results in terms of a fixed number of generations. The
convergence paths of both EGA and MGA are presented separately in Fig. 3 to Fig. 6.
Due to the better uniformity property of HSS, the best solution found by EGA in the first
generation should be better than MGA. Fig. 3, 4, 5 show this trend. But Fig. 6 shows that
the best initial solution for MGA for example(3) with ND equal to 5 is 31, while the best
initial solution found by EGA is 89.08. Since MCS is not as uniform as HSS, in some
regions MCS has more sample points than HSS, thus MCS would have a better chance to
find the best solution when it lies in these regions. At the same time, the use of HSS on
the genetic operation produces more uniform operation on the population. Such unbiased
operations maintain a better balance between keeping the fittest string pattern and
diversity. In all the case studies shown in Fig. 3 to Fig. 6, the fast convergence of EGA is
observed while MGA is trapped in a local optimum before reaching maturity. All the
above observations prove that GA benefits from the uniformity property of HSS, by
producing more diverse individuals and operations. Further, the figures show that when

 6

the dimension of the problem size increases from ND=10 to ND=20, the difference in
performance between EGA and MGA is magnified.
4.2. Stochastic genetic algorithm.
4.2.1. Overview of optimization under uncertainty and stochastic genetic algorithm
(SGA)
Optimization problems involving uncertainties in the data or model are commonly cited
as stochastic programming problems and are divided into categories such as “wait and
see”, “here and now”, and “chance constrained optimization” (Diwekar, 2003). While
formulating the optimization problems under uncertainty, the objective function and
constraints are expressed in terms of probabilistic representations (e.g., expected value,
variance, fractiles, or most likely values).

()[]ζ,min 1 xfPz = (4)
()[] 0,.. 2 =ζxhPts
()[] 0,3 ≤ζxgP

Ξ∈∈ ζ,Xx

Here x is a vector of decision variables of domain X , and ζ is a vector of uncertain
parameters of domain Ξ . The objective function, equality, and inequality constraints are
defined by a set of probability functions 1P , 2P and 3P . The probability function iP
represents a cumulative distribution function such as the expected value, mode, variance,
or fractiles. If iP is the expected value, the above optimization problem becomes:

()[]ζζ ,min xfEz = (5)

where ζE is the mathematical expectation with respect to ζ . In this case, the main
difficulty of stochastic programming stems from evaluating the uncertain functions and
their expected values. A generalized method to propagate the uncertainties employs a
sampling technique. Once the sampling method is determined, then it propagates sampN
samples for random parameter ζ and optimizes the following approximated problem:

),(1min
1
∑

=

=
sampN

j

j

samp

xf
N

z ζ
(6)

Figure 7 shows a general framework of stochastic optimization. It has two loops, inner
sampling loop to propagate uncertainties, and outer optimization loop to optimize the
probabilistic objective function. Stochastic genetic algorithm (SGA) is used to in the
outer loop to optimize a probabilistic objective function, which in our case is the
expected value. The objective function includes the expected value of the objective
function and a penalty term with respect to sample errors. The corresponding penalized
objective function is as follows:

() ()εζζ tbxfEz += ,min (7)

where ()tb is a weighting function, and ε is the error bandwidth (confidence interval) of
sampling method. In the stochastic genetic algorithm, the optimizer obtains not only the
decision variables, but also the number of samples required for the stochastic model. The
weighting function can be expressed as a function of generation. At the beginning of the

 7

search, accuracy is not essential, thus fewer samples are needed for the sake of
computation efficiency, while with the evolution exploitation becomes dominant. In this
case, more samples are needed to ensure the accuracy of the results. From the above
analysis, an exponential weighting function can be derived:

() tk
b

tb 0=
(8)

where 0b is a small constant (e.g. 0.001), k is a constant (e.g. 0.92) and t is the
generation number. If the generation size is considerable, to ensure the penalty term does
not exceed 5% of the real objective function, t should be divided by a constant value like
100. The error bandwidth can be estimated from classical statistical methods, which leads
to the following formula:

()αε
sampN
1∝

(9)

where α is sampling method related constant. The corresponding α value for a crude
Monte Carlo method is 0.5. The SGA algorithm is summarized as follows:

At t = 0,
• Generate initial population P(t).
• Select the number of samples sampN by a random move. If () 5.01,0 ≤rand ,

then
 sampN = sampN +10 * rand(0,1)
 else
 sampN = sampN - 10 * rand(0,1)
• Evaluate P(t) with penalized objective function (7).

 While termination condition is not satisfied, do
• Update sampN .
• Recombine P(t) to generate C(t).
• Evaluate C(t) with penalized objective function (7).
• Select P(t + 1) from P(t) and C(t).
• Set P(t) = P(t + 1).

4.2.2. Efficient stochastic genetic algorithm (ESGA).
The inner sampling loop is important when trying to optimize the objective function (6).
In this inner loop, a sampling method like Monte Carlo sampling (MCS) or Latin
hypercube sampling (LHS) is used for the uncertain parameters. However, the required
number of samples to approximate the “true” mean or variance is large, which would be
computationally expensive and this necessitates the use of an efficient sampling method.
Hammersley sequence sampling (HSS), which shows both better homogeneities over
multivariate parameter space and which uses less number of samples for convergence, is
an ideal substitute in the sampling loop. Efficient stochastic genetic algorithm (ESGA)
uses the same strategy as in EGA, in which HSS is used to produce initial populations
and improve the uniformity of selection, crossover and mutation. In addition, the HSS
method is also used for uncertainty analysis in the stochastic model. Thus in ESGA, HSS
is used both in the inner sampling loop and outer optimization loop.

 8

4.2.3. Hammersley Stochastic Genetic Algorithm (HSGA).
The error bandwidth used in SGA and ESGA is derived from the estimation of the
bounds of Monte Carlo sampling using classical statistical methods. But this method
overestimates either the confidence intervals or bounds (Chaudhuri and Diwekar, 1999)
for HSS. Thus, a new error bandwidth for HSS needs to be characterized to get more
efficient HSGA. A strategy based on the concept of fractal geometry (Kim and Diwekar,
2004) to quantify the error bandwidth has been developed. The new α value for HSS
method is -1.4, so the new HSS-specific error bandwidth is given by:

() 4.1

1

samp
HSS N

∝ε
(10)

With the incorporation of this new error bandwidth in the penalty term, the development
of the Hammsersley stochastic genetic algorithm (HSGA) is complete.
4.2.4. The performance of SGA, ESGA, and HSGA.
Example (3) is modified by adding uncertain factors, which leads to a stochastic MINLP,

() ()∏∑∑ −+⎟
⎠
⎞

⎜
⎝
⎛ −=

ND

i
ii

ND

i
ii

ND

i
ii yy

ND
ixyxf πζζζζ 4cos,, 2

2

(11)

Fig. 8 shows the convergence path of SGA, ESGA, and HSGA, in which HSGA achieves
the best performance and SGA the worst. The efficiency improvement of ESGA and
HSGA over SGA is due to both the improved uniformity and faster convergence
properties of HSS. HSGA outperforms ESGA because of the reduced error bandwidth.
The usage of the HSS bandwidth reduces the possibilities of distraction from the optimal
objective value, thus make HSGA reach the real objective value faster.
5. Conclusion.
In this paper, the newly developed HSS technique has been applied to genetic algorithm
to improve the performance for both deterministic and stochastic optimization problems.
Efficient genetic algorithm (EGA) has been developed for solving deterministic
optimization problems by capitalizing on the better uniformity property of HSS technique
in population initialization and genetic operation. The effect of seed on EGA was tested,
which resulted in the use of dynamic seed to increase population diversity and to decrease
the dependence of performance on the random seed. In developing efficient stochastic
genetic algorithm (ESGA), both faster convergence and the uniformity properties of HSS
technique have been exploited. In Hammersley stochastic genetic algorithm (HSGA), the
HSS-specific error bandwidth has ben applied to the penalty term of the probabilistic
objective function. HSGA has been proved to converge faster than stochastic genetic
algorithm (SGA) and Efficient stochastic genetic algorithm (ESGA).

References
Bayer, H. G., 1996. Toward a theory of evolution strategies: Self-adaptation.
Evolutionary Computation, 3, 311-347.

Chaudhuri, P., Diwekar, U., M., 1999. Synthesis approach to the determination of
optimal waste blends under uncertainty. AIChE J., 45, 1671-1687.

Dantzig, G., Glynn, P., 1990. Parallel processors for planning under uncertainty. Annals
of Operations Research., 22, 1-21.

 9

Deb, K., Agrawal, R., B. 1995. Simulated binary crossover for continuous search space,
Complex Systems, 9, 115-148.

Diwekar, U., M., Kalagnanam, J., R. 1997. Efficiency sampling technique for
optimization under uncertainty. AIChE J., 43, 440-447.

Diwekar, U. M., 2003. Introduction to applied optimization. Applied optimization, 80,
Kulwer Academic Publishers, Massachusetts.

Fogel, G. B., Owens, A.J., Walsh, M. J., 1966. Artificial Intelligence Through Simulated
Evolution. Willey, New York.

Gen, M., Cheng, R., 2000. Genetic algorithms & Engineering optimization. Wiley-
Interscience publication, USA.

Herrera, F. and M. Lozano. 1996. Adaptation of genetic algorithm parameters based on
fuzzy logic controllers, in Herrera, F. and J. Verdegay, editors, Genetic Algorithms and
Soft Computing, 95-125.

Holland, J. H., 1975. Adaptation in Natural and Artifical System, University of Michigan
Press, Ann Arbor, MI.

Iman, R. L., Conover, W. J. 1982. Small-sample sensitivity analysis technique for
computer models, with an application to risk assessment. Communications in Statistics –
Part A, Theory and Methods, 17, 1749-1842.

Kim, K.-J., Diwekar, U. M. 2002 Efficient Combinatorial Optimization under
Uncertainty. 1. Algorithmic Development. Ind. Eng. Chem. Res., 41, 1276-1284.

Kim K. J., and Diwekar, U. M. 2004. Characterizing Sampling Error for Optimization
Under Uncertainty: A Fractal Geometry Approach. submitted to Operations Research.

Koza, J. R., 1992. Genetic programming: on the programming of computers by means of
natural selection. In: Complex Adaptive Systems. MIT Press, Cambridge, MA.

Michalewicz, Z., 1996. Genetic Algorithm + Data structure = Evolution Programs, 3rd
edition, Springer-Verlag, New York.

Özdamar, L. 1999. A genetic algorithm approach to a general category project scheduling
problem. IEEE Trans, Syst., Man, Cybern.-Part C: Application and reviews, 29, 44-59.

Painton, L. A., Diwekar, U., M., 1994. Synthesizing optimal design configurations for a
brayton cycle power plant. Computers and Chemical Engineering, 18, 365-381.

Rechenberg, I., 1973. Evolutionstrategie: Optimieriung technischer systeme nach
prinzipien der biologischen evolution, Frommann-Holzboog, Stuttgart, Germany.

Salazar, R., Toral, R., 1997. Simulated annealing using hybrid Monte Carlo. Journal of
Statistical Physics, 89, 1047-1060.

Schwefel, H., 1995. Evolution and Optimum Seeking, Wiley, New York.

 10

Tarafder, A., Rangaiah, G.P. and Ray, Ajay K.,2005. Multiobjective optimization of an
industrial styrene monomer manufacturing process. Chemical Engineering Science, 60,
347-363.

 11

List of Figures:
1) Fig. 1 : Comparison between (a) MCS sampling and (b) HSS sampling technique.
2) Fig. 2: The effect of different seed on the HSS generated samples.
3) Fig. 3: The convergence path of EGA and MGA for Example 1 with ND = 10. A is
the best initial solution in the first generation of MGA, while B is the best initial solution
found in the first generation of EGA. The total generation is 150.
4) Fig. 4: The convergence path of EGA and MGA for Example 1 with ND = 20. A is
the best solution in the first generation of MGA, while B is the best solution found in the
first generation of EGA. The total generation is 200.
5) Fig. 5: The convergence path of EGA and MGA for Example 2. A is the best solution
in the first generation of MGA, while B is the best solution found in the first generation
of EGA. The total generation is 200.
6) Fig. 6: The convergence path of EGA and MGA for Example 3 with ND=5. A is the
best solution in the first generation of MGA, while B is the best solution found in the first
generation of EGA. The total generation is 200.
7) Fig. 7. The framework of stochastic optimization.
8) Fig. 8: The convergence path of SGA, ESGA, and HSGA for stochastic example (11)
with ND = 5.

 12

Fig. 1: Comparison between (a) MCS sampling and (b) HSS sampling technique.

Fig. 2: The effect of different seed on the HSS generated samples.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 random seed 2 random seed 1

Monte Carlo

X

0.0 0.2 0.4 0.6 0.8 1.0

Y

0.0

0.2

0.4

0.6

0.8

1.0

Hammersley

X

0.0 0.2 0.4 0.6 0.8 1.0

Y

0.0

0.2

0.4

0.6

0.8

1.0
a) b)Monte Carlo

X

0.0 0.2 0.4 0.6 0.8 1.0

Y

0.0

0.2

0.4

0.6

0.8

1.0

Hammersley

X

0.0 0.2 0.4 0.6 0.8 1.0

Y

0.0

0.2

0.4

0.6

0.8

1.0
a) b)

 13

Fig. 3: The convergence path of EGA and MGA for Example 1 with ND = 10 of a single
run. A is the best initial solution in the first generation of MGA, while B is the best initial
solution found in the first generation of EGA. The total number of generations is 150.

 14

Fig. 4: The convergence path of EGA and MGA for Example 1 with ND = 20 of a single
run. A is the best solution in the first generation of MGA, while B is the best solution
found in the first generation of EGA. The total number of generation is 200.

0 50 100 150 200
-10

0

10

20

30

40

50

60

A(642)

B(377)

O
bj

ec
tiv

e
va

lu
e

Generation

 EGA
 MGA

 15

Fig. 5: The convergence path of EGA and MGA for Example 2 of a single run. A is the
best solution in the first generation of MGA, while B is the best solution found in the first
generation of EGA. The total number of generation is 200.

Fig. 6: The convergence path of EGA and MGA for Example 3 with ND=5 of a single
run. A is the best solution in the first generation of MGA, while B is the best solution
found in the first generation of EGA. The total number of generation is 200.

0 20 40 60 80 100 120 140

0

1

2

3

4

5

A(5)

B(4)
O

bj
ec

tiv
e

va
lu

e

Generation

 EGA
 MGA

 16

Fig. 7. The framework of stochastic optimization.

 17

Fig. 8: The convergence path of SGA, ESGA, and HSGA for stochastic example of
equation (11) with ND = 5.

 18

List of Tables:
1) Table1: The effect of seed on the performance of Efficient genetic algorithm for
example (3) with ND = 5.
2) Table 2: Comparison of EGA and MGA with examples (1), (2) and (3).

Table 1: The effect of seed on the performance of efficient genetic algorithm for example
(3) with ND = 5.

Random seed 425001 888868 25689 256 Dynamic seed
Objective value -0.9994 -0.9983 -0.9970 -0.9958 -0.9992

Generation 22 200 200 200 124

Table 2: Comparison of EGA and MGA with examples (1), (2) and (3). The results of
EGA are the average of five runs with dynamic seed value.
 Optimal value/Generation

 ND
Total number of

generations MGA EGA
Theoretical

optima
Example 1 10 150 2/150 0/40.6 0

 20 200 26 / 200 0 / 195.2 0
Example 2 200 1 / 200 0 / 16.4 0
Example 3 5 200 -0.9987 / 200 -0.9991 / 88.6 -1

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

