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1. Introduction 
 

Transport phenomena, including mass, momentum and heat transfer and the coupling 
of transport and chemical reactions, play a dominant role in chemical engineering processes.  
For example, a distillation process in a packed column involves fluid flow (momentum transfer) 
of liquid and vapor phases, mass transfer within a homogeneous phase and on the liquid and 
vapor interface, and heat transfer within and between phases [6, 9-11, 16].  Mathematical 
modeling of transport phenomena has been widely employed in many areas of chemical 
engineering. Analytical solutions for such modeling systems are usually not available due to 
the complexity of the chemical engineering process systems. Instead, numerical methods have 
to be used extensively. 
 
 Finite difference methods (FDMs), in particular the cell center finite difference methods, 
are widely used for numerical simulation of transport phenomena arising in chemical 
engineering due to the simplicity of implementation.  However, FDMs have many limitations.  
They are difficult to handle complex geometry of the domain.  FDMs are generally lower order 
methods and cannot directly handle full tensor parameters (e.g. anisotropic diffusivity, 
conductivity or permeability).  Moreover, FDMs do not provide the flexibility of locally mesh 
adaptation without using complicated arguments.  Finite volume methods (FVMs) and finite 
element methods (FEMs) are two families of solution strategies that are flexible for the 
treatment of complex geometry and local mesh refinement, and are widely used in the field of 
computational fluid dynamics (CFD).  The traditional FEMs (the continuous Galerkin methods), 
however, are not locally conservative without post-processing.  FVMs, by design, preserve 
locally conservation, but they are generally low-order methods and are complicated to extend 
to high-order approximations.  In addition, FVMs are difficult to treat full tensor parameters. 
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Discontinuous Galerkin (DG) methods are specialized finite element methods that 
utilize discontinuous spaces to approximate solutions [2, 4-5, 7-8, 12-15, 17-18].  DG methods 
have recently gained popularity for many attractive properties. First of all, the methods are 
locally conservative while most classical finite element methods are not. In addition, they have 
less numerical diffusion than most conventional algorithms, thus are likely to offer more 
accurate solutions, especially for convection-dominated transport problems. They handle 
rough coefficient problems and capture the discontinuity in the solution very well by the nature 
of discontinuous function spaces.  DG can naturally handle inhomogeneous boundary 
conditions and curved boundaries.  Furthermore, with appropriate meshing, DG is capable of 
delivering exponential rates of convergence.  For time-dependent problems in particular, the 
mass matrices are block diagonal for DG, but not for conforming methods. This provides DG a 
substantial computational advantage, especially if explicit time integrations are used. However, 
the applications of DG to chemical engineering problems are still limited. 
 

In this paper, we consider a family of DG methods applied to chemical engineering 
problems. They are the four primal discontinuous Galerkin schemes for the space 
discretization: Symmetric Interior Penalty Galerkin (SIPG) [7, 17], Oden-Baumann-Babuska 
version of DG (OBB-DG) [4], Nonsymmetric Interior Penalty Galerkin (NIPG) [5] and 
Incomplete Interior Penalty Galerkin (IIPG) methods [2, 7].  Formulation of these schemes will 
be first introduced to a general time-dependent parabolic type equation, and then applied to 
the simulation of transport and reaction arising from chemical engineering.  Three 
representative chemical engineering problems, namely, a diffusion-convection-reaction 
problem in a catalytic particle, a problem of heat transfer in a fixed bed and a contaminant 
transport problem in porous media, will be presented.  Efficient implementation issues and 
advantages of DG will be addressed.  In particular, the dynamic mesh adaptation strategies 
are proposed, by which the local physical phenomena can be effectively and efficiently 
captured.  
 
 
2. Model Equation and Discontinuous Galerkin Algorithms  
 

We let Ω  be a polygonal and bounded domain in a d-dimensional space (d=1, 2 or 3), 
and let T be the final simulation time.  We consider the following general parabolic equation:  
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where the dependent (unknown) variable is c.  Here, φ , a scalar, u, a vector, and D, a second-
order tensor, are given data, and can be functions of time and space.  The right hand side r(c) 
is a given function of the unknown variable c, and can be functions of time and space as well: 
r(c)=r(c, x, t).  Equation (1) can be used to model transport phenomena including heat and 
mass transfer processes.  For example, to model single-phase contaminant transport in porous 
media, the unknown variable c is considered as the concentration of a species (amount per 
volume); φ  is the porosity; u is the Darcy velocity; D is the dispersion/diffusion tensor; r(c) is 
the term from well injection, extraction and chemical reaction.  More variations of the model 
equation will be presented in the numerical example sections of this paper.   
 
 We consider two types of general boundary conditions: the Dirichlet and the Robin 
types.  We divide the domain boundary Ω∂  into the Dirichlet boundary DΓ  and the Robin 



boundary RΓ  such that φ=Γ∩Γ RD  and Ω∂=Γ∪Γ RD .  The following boundary conditions are 
imposed for the problem (1): 
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where Bc  and Bk  are given boundary data that can be constants or functions of time and 
boundary space.  We impose the following initial condition:  
 0)0,( cxc = ,         (4) 
where 0c  is the given initial data that could be a function of space.  We remark that the inflow, 
outflow and no-flow boundary conditions employed in modeling contaminant transport 
problems (see [7-8, 12-15] as well as Section 5 of this paper) are special cases of the Robin 
boundary condition (3).   
 

To discretize the space, we let hE  be a family of non-degenerate and possibly non-
conforming partitions of the domain Ω  composed of line segments for one-dimensional space, 
triangles and/or quadrilaterals for two-dimensional space, or tetrahedral, prisms and/or 
hexahedra for three-dimensional space.  The set of interior element interfaces is denoted by hΓ .  
We define the average and the jump for an element-wise smooth function on the interface γ  of 
two elements 1e  and 2e  as follows.   
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The discontinuous finite element space is taken to be 
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where )(ePr  denotes the space of polynomials of (total) degree less than or equal to r  on the 
element e .  
   
 We introduce the bilinear form ),( wcB  as follows:  

( )

,]][[

][

]}[{]}[{),(

2

*

∑ ∫∑ ∫∑ ∫

∑ ∫∑ ∫∑∫

∑∫∑∫∑∫

Γ∈Γ⊂Γ∪Γ∈

Γ⊂Γ⊂Γ∈

Γ∈Γ∈∈

++⋅+

⋅∇−⋅∇−⋅+

⋅∇−⋅∇−∇⋅−∇=

hRRD

DDh

hhh

wc
h
r

cwkwc

cwswcwc

cwswcwccwcB

B

form

form
Ee

e

γ
γ

γ

γ

γ
γ

γ
γ

γ
γ

γ
γ

γ
γ

γ
γ

γ
γ

σ
nu

nDnDnu

nDnDuD

  (5) 

where *c  is the upwind value of c , and forms  is taken to be -1 for NIPG and OBB-DG, 1 for 
SIPG, and 0 for IIPG.  Penalty parameters ( γσ ) are zero for OBB-DG, nonnegative for NIPG, 
and strictly positive for SIPG and IIPG.  The linear functional );( cwL  is defined as  
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The continuous-in-time DG solution ))(;,0(,1
hr

DG EDTWC ∞∈  of the problem (1)-(4) is given by  
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A fully discretized DG algorithm can be obtained from the above formulation by further applied 
a standard time integration scheme such as the backward Euler method, the trapezoid rule or 
a Runge-Kutta method.  
 
 Four different primal DG schemes, i.e. OBB-DG, NIPG, SIPG and IIPG, are unified in 
a single formulation (7)-(8), depending upon the choice of forms  and the penalty term.  The 
algorithm (7)-(8) is known to possess local conservative property (element-wise satisfaction of 
mass/heat/momentum balance) [2, 5, 7, 15].  The existence of a unique solution of the 
equation system (7)-(8) has been mathematically established [7].  It is shown [5] that the error 
in the L2(H1) norm from OBB-DG converges optimally in h (the mesh size) and nearly optimally 
in p (the degree of approximation):  
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where DGC  is the DG solution, c the exact solution, r the order of approximation, h the 
maximum element length, and s the regularity of the solution.  The positive constant K 
depends upon only the solution, and is independent of the mesh size and the order of 
approximation.  Because of the penalty term, the convergence of NIPG, IIPG and SIPG in the 
L2(H1) norm is not only optimally in h, but also is closer to optimality in p [7]: 
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If the mesh is conforming and contains only line segments, triangles or tetrahedral, NIPG, IIPG 
and SIPG achieve optimal L2(H1) convergence in both of h and p [7].  It should be pointed out 
that SIPG is the only primal DG method that possesses optimal L2(L2) convergence in h [7]:  
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Because of this optimality in L2(L2) norm, the SIPG method is a particularly interesting DG 
method, especially if the scalar unknown variable c is of primary interest rather than its flux.  
SIPG is also interesting from a computational point of view since, it is the only DG method that 
gives a symmetric algebraic system for diffusion-reaction type equations, which could be 
exploited to construct fast linear solvers.  Other family members of primal DG methods are of 
interest as well in many situations.  For instance, OBB-DG and NIPG methods are capable to 
handle problems involving high varying coefficients, and IIPG is the only fully compatible 
method among the four for coupled flow and transport problems [2, 7, 15]. 
 
 
 
 
 
 
 



3. Two Numerical Examples without Mesh Adaptation 
 
3.1. A Diffusion-Convection-Reaction System in a Catalytic Particle  
 
 We first apply DG to the classic chemical engineering problem concerning diffusion-
convection and reaction in a catalytic particle [1].  The model equation is given by  
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The variable c, a normalized concentration, is a function of time t and one-dimensional space x.  
We note that, even though physical phenomena occur in a three-dimensional space, the model 
equation reduces to a one spatial dimension by taking advantage of the symmetry of the 
problem.  The variable t is the time normalized by the diffusion time constant.  Similarly, the 
space variable x has been normalized by the half thickness of the particle.  mλ  is the 
intraparticle Peclet number and Φ  is the Thiele module.  We impose the normalized boundary 
and initial conditions:  
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Figure 1.  Effect of the intraparticle Peclet number on concentration profiles ( 1=Φ ): 
(A) 0=mλ , (B) 1=mλ , (C) 5=mλ . 

 
 
 
 Simulations are conducted for different values of parameters mλ  and Φ  in order to 
test the performance of the algorithm.  To demonstrate that DG works well even without mesh 
adaptation, we use a uniform grid with 100 elements.  Though the other three DG schemes 
could be used as well, OBB-DG is chosen for this numerical example.  OBB-DG is more 
convenient than the other three in the sense that it does not contain the penalty term, thus 
eliminate the choice of penalty parameters.  The complete quadratic basis functions (i.e. r=2) 
are used for each element.  The backward Euler method with a uniform time step 01.0=∆t  is 
used for time integration.  Concentration profiles are plotted in Figures 1 and 2 at various times, 

(B) (C)(A) 



from t=0.1 to t=1, with various combination of model parameters.  Figure 1 compares the 
concentration profiles for different intraparticle Peclet numbers.  We remark that Figure 1(A) 
displays the behavior of the diffusion-reaction system in absence of convection.  Figure 2 
illustrates the influence of the Thiele modules on concentration profiles.  Clearly, the behaviors 
of the diffusion-convection-reaction system are thoroughly reproduced by the DG scheme in a 
wide range of system parameters.  In addition, it is shown that DG is effective to both the 
convection-free diffusion-reaction system (Figure 1(A)) and the convection-dominated 
diffusion-convection-reaction problem (Figure 2(A)), as well as the reaction-dominated system 
(Figure 2(F)).  
 
 
 

 
   

 
   

Figure 2.  Effect of the Thiele module on concentration profiles ( 10=mλ ):  
(A) 0=Φ , (B) 1=Φ , (C) 2=Φ , (D) 3=Φ , (E) 5=Φ , (F) 10=Φ . 

 
 
 
3.2. A Heat Transfer Process in a Fixed Bed 
 
 The study of heat transfer in fixed beds is of considerable importance in various unit 
operations in chemical engineering.  In particular, simulation of this process is crucial to the 
analysis and design of separation units in which a fluid passing through the bed exchanges 
mass and heat with the particles in the presence of chemical reactions (e.g. exothermic 
catalytic reaction) or in the absence of chemical reactions (e.g. non-isothermal adsorption).   

(A) (C)(B) 

(D) (F)(E) 



 

 
 

 
   

 
   

Figure 3.  Normalized temperature profiles at various times: (A) t = 0.05,  
(B) t = 0.1, (C) t = 0.2, (D) t = 0.5, (E) t = 1, (F) t = 2, (G) t = 3, (H) t = 4, (I) t = 10. 

 
 

We now consider a two-dimensional pseudo-homogeneous model described by the 
following governing dimensionless equation [1, 3]:  

,0,10,10

,1)1( 2

2

2

2

2

2

><<<<
∂
∂

+
∂
∂

−
∂
∂

+
∂
∂

=
∂
∂

+

trx
r
T

rPe
L

x
T

r
T

Pe
L

x
T

Pet
T

rrh
hξ  

where T is the dimensionless temperature, x the normalized axial variable along the fixed bed, 
r the normalized radial variable and t the dimensionless time.  There are four dimensionless 
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parameters in the differential equation: hξ , the thermal capacity factor, hPe , the axial thermal 
Peclet number, rPe , the radial thermal Peclet number, and L, the ratio of the bed length and 
radius.  There is one more dimensionless number, Bi, the thermal Biot number, in the following 
imposed boundary conditions:   
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The initial condition is given by  
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 We carry out the simulation with the following parameters: 3.1=hξ , 100=hPe , 

500=rPe , 20=L , 8=Bi  and 00 =T .  We use OBB-DG for this numerical example and remark 
that the other three DG schemes could be applied as well.  A uniform 32 by 32 mesh with the 
complete quadratic basis functions for each element is used for spatial discretization.  The 
backward Euler method with a uniform time step 01.0=∆t  is used for time integration.  
Temperature profiles are presented in Figures 3 at various times, from t=0.05 to t=10.  It is 
easy to see that the enthalpy (heat energy) is transferred into the bed mainly by convection at 
the entrance of the bed, and is transferred out of the bed by both the conduction through the 
wall and the convection at the bed exit.  Inside the bed, heat transfer is dominated by 
convection in early times and is balanced by convection and conduction at later times.  The 
temperature profile ultimately approaches a steady state, where heat is transferred in radial 
direction only by conduction and in axial direction mainly by convection.  This numerical 
example demonstrates that DG is effective for both the conduction dominated and the 
convection dominated problems.    
 
 
4. Mesh Adaptation Strategies   
 

Mesh modification is an important ingredient of adaptive strategies for FEMs.  DG 
possesses substantial advantages over classic FEMs in term of adaptive mesh modification.  
First of all, the approximation spaces for DG are localized in each element, which provides a 
flexibility allowing for general non-conforming meshes with variable degree of approximation.  
In particular, non-matching grids and hanging nodes are treated naturally in DG.  This results 
in substantially easier adaptive implementation for DG than for conventional FEM approaches.  
This flexibility also increases the efficiency of adaptivity because the unnecessary areas do not 
need to be refined in order to maintain conformity of the mesh. 
 
 For any adaptive mesh modification, we need to know which set of elements need to 
be refined or coarsened to improve our solution.  This goal is often achieved by an a posteriori 
error estimate (or error indicator), which provides valuable error information, and can be used 



to guide adaptive modifications of the mesh.  Using a duality argument, we have developed an 
explicit L2(L2) a posteriori error estimate for SIPG applied to time-dependent problems (see [7, 
12] for detailed information): 
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This a posteriori error estimate is especially valuable in the cases where the primal scalar 
unknown rather than the flux is of interest.  It is easy to implement and computationally cheap.  
Numerical experiments show that it is sharp in capturing the areas with large errors and could 
guide effective mesh modifications to achieve efficient adaptivities [12].  In particular, they are 
sharp in capturing concentration fronts in reactive transport problems.  As for the other primal 
DG schemes, we have established a unified a posteriori error estimate approach in the L2(H1) 
norm (see [7, 14] for detailed information): 
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where the local error indicator eη  is defined by 
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The approach is flexible and applies to all the four versions of DG, namely, OBB-DG, SIPG, 
NIPG and IIPG.  The a posteriori error estimates in L2(H1) is explicit and residual based, and 
thus is also computationally efficient.  General boundary conditions can be easily incorporated 
into these L2(H1) error estimates.  In addition, no regularity assumption for the dual problem is 
required for these estimates.  Numerical performance of the a posteriori error estimators under 
two major categories, namely estimators in L2(L2) and in L2(H1) have been investigated and 
compared [7, 12, 14].  Results indicate that L2(H1) type error indicator is more flexible, but L2(L2) 
type error indicator is more effective for many reactive transport cases.   
 

We consider two types of mesh modifications: mesh enrichment and mesh adjustment.  
In the first approach, a set of elements in the mesh are chosen to be refined according to an 
error indicator.  Figure 4 illustrates the approach, where the three elements with the largest 
error indicator values are locally refined.  The number of elements in the mesh grows after an 
application of mesh enrichment.  Alternatively, in mesh adjustment, we can fix the number of 
elements, but refine some elements and coarsen some other elements adaptively to make the 
mesh more suitable for the problem.  Figure 5 gives an example of this approach, where the 



three elements with the largest error indicator values are locally refined while the other three 
elements with the smallest error indicator values are locally coarsened, and the total number of 
elements remains constant. 
    

   
Figure 4.  Illustration of the mesh enrichment approach.   

 

   
Figure 5.  Illustration of the mesh adjustment approach.  

 
 

There are mainly two types of mesh adaptation strategies: static and dynamic ones.  In 
a static adaptive approach, we usually start with a coarse mesh and increase the number of 
elements by mesh enrichment according to an error indicator [7, 13].  On the other hand, a 
dynamic adaptive strategy is often to start with a fine mesh and modify the mesh with time 
steps using mesh adjustment according to an error indicator [13].  A static strategy is mainly 
used for time-independent problems, and it generates a single adaptive mesh for all time, if 
applied to transient problems.  A dynamic strategy is associated with time-dependent problems 
and produces adaptive meshes dynamically changed with time.   
 

Dynamic mesh modifications are particularly effective for transient problems involving 
a long period of simulation time, because the location of strong physics usually moves with 
time.  It is favorable to compute the error indicator for only a short time interval involving the 
current time, and to modify the mesh dynamically with time.  Because it is expensive to change 
the mesh each time step, we divide the entire simulation time into a collection of time slices, 
each of which may in turn contains a certain number of time steps.  Our dynamic mesh 
adaptation strategy for DG is detailed in Algorithm 1.  We note that a coarsening-compatible 
condition is enforced in Algorithm 1 to ensure the consistency of mesh data structure.  Unlike 
in conforming FEM methods, each element in the DG mesh may be refined since DG allows 



for an arbitrary degree of nonconformity.  However, not every element is available to be 
coarsened; for instance, the element without a father cannot be further coarsened.  The 
coarsening-compatible condition is defined in Definition 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1. (Dynamic mesh adaptation for DG)  
Given an initial mesh 0E , a modification factor )1,0(∈α , time slices {(T0, T1), 
(T1, T2), …, (TN-1, TN)} and iteration numbers for each time slices {M1, M2, …, 
MN}. 
1. Let n = 1; 
2. Let m = 1; 
3. Compute the initial solution for time slice (Tn-1, Tn) using either the initial 

condition (if n = 1) or the solution at the end of last time slice (if n>1) by a 
local projection; 

4. Let 0, EE nm =  if n=1 and m=1; or 1,1, 1 −+−
= nMnm n
EE  if n>1 and m=1; 

5. Compute the DG approximation of the PDE for the time slice (Tn-1, Tn) 
based on the mesh nmE ,  and compute the error indicator eη for each element 

nmEe ,∈ ; 
6. Select nmr EE ,⊂  such that  

( ))(#round)(# ,nmr EE α=  and ≥∈ }:min{ re Eeη }\:max{ , rnme EEe∈η ; 
7. Select nmc EE ,⊂  to minimize }:max{ ce Ee∈η  subject to 
    ( ))(#round)(# ,nmc EE α=   
 and that cE  satisfies the coarsening-compatible condition with regard to 

nmE ,  and rE ;  
8. Refine all elements rEe∈  and coarsen all elements cEe∈ to form a new 

mesh nmE ,1+ ; 
9. Let m=m+1. If nMm ≤ , go to step 3; 
10. Let n=n+1. If Nn ≤ , go to step 2; 
11. Report the solution and stop. 
 

Definition 1. (Coarsening-compatible condition)  
The coarsening element set cE  is said to satisfy the coarsening-compatible 
condition with regard to the mesh E  and the refining element set rE  if and only 
if the following conditions are satisfied:  
1. Each element in cE  has a father; 
2. Brothers of an element in cE  are active, that is, they sit in E ; 
3. None of the elements in cE  and their brothers are in rE ; 
4. Brothers of an element in cE  are not in cE .   



5. A Numerical Example with Dynamic Mesh Adaptation  
 

We consider the following normalized contaminant transport problem in a single phase 
in porous media:    
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where the domainΩ =(0, 10)2 has an inflow boundary inΓ  and an outflow/no-flow boundary outΓ .  
The diffusion-dispersion D is a constant, diagonal tensor with Dii = 0.01; and the velocity is u = 
(-0.1, 0) uniformly across the domain.  The domainΩ  is divided into two parts, i.e. the lower 
half lΩ =(0,10)x(0,5) and the upper half uΩ =(0,10)x(5,10).  The effective porosity eφ  in uΩ  is 0.1.  
Adsorption occurs only in the lower part of the domain, which results in an effective porosity 
eφ =0.2 in lΩ .   The initial total concentration is 0.1 inside the square centered at (5,5) with the 

size of 0.3125x0.3125 and is 0.0 elsewhere, as shown in Figure 6(A).  The total concentration 
here is defined as the product of the concentration in fluid and the effective porosity. 
 

   
 

 
 
 
 
 

SIPG is employed to solve this problem because the scalar variable (concentration) is 
of primal interest in this problem and SIPG is only one of the four primal DG methods that 
possesses optimal a priori and a posteriori error estimators in L2(L2).  The penalty parameter is 
chosen according to [7].  The simulation time interval is (0, 2) and we use the backward Euler 
method for time integration with a uniform time step t∆ = 0.01.  The complete quadratic basis 
function is used for each element.  The initial mesh is a 16x16 uniform rectangular grid.  
Dynamic mesh adaptation is incorporated into the DG algorithm, and it is guided by the a 
posteriori error indicator in L2(L2).  A time derivative term in the interior residual is needed in 
the computation of the error indicator, and is approximated by a finite difference [12, 14].  The 
modification factor for the dynamic mesh adaptation is chosen to be α =0.05.  We partition the 

Figure 6.  Numerical example of contaminant transport in porous 
media: (A) velocity and initial contaminant concentration in fluid, (B) DG 
solution at t=1 using a uniform rectangular mesh without mesh 
adaptation 

(B)(A) 



simulation time interval (0, 2) into 20 time slices uniformly.  The iteration number is chosen to 
be 5 for the initial time slice and to be 2 for the remaining time slices.   

 
Figure 6(B) shows the DG solution without mesh adaptation at t=1, whereas Figure 7 

illustrates the DG solutions powered by dynamics mesh modification at various times.  Due to 
retardation effects arising from adsorption, the contaminant transport is slower in the lower part 
of the domain.  A continuous concentration profile is observed because of diffusion-dispersion.  
It should be observed that the mesh is densely refined around the moving contaminated region 
and at the plume front.  This is driven by the physics as convection is large at high 
concentration area (plume center) and diffusion is significant at high concentration gradient 
area (plume edge).  Clearly, the dynamic mesh modification guided by the L2(L2) error indicator 
sharply captures the dynamically changed local behavior of the advection-diffusion-adsorption 
process.   

           

           

           

           
 
 
 
 
 

Figure 7. DG solutions and the mesh structures using the dynamic 
mesh adaptation approach at (A) t=0.2, (B) t=0.4, (C) t=0.6, (D) t=0.8,
(E) t=1, (F) t=1.4, (G) t=1.8, and (H) t=2.  

(A) (B) 

(C) (D) 

(G) 

(F) 

(H) 

(E) 



 
Due to the discontinuous space used in DG, the projections of concentration during 

mesh modifications involve only local computations and are locally mass conservative, which 
ensures both the efficiency and the accuracy of DG during dynamic mesh modifications.  We 
emphasize that simultaneous locality of both the computation and the conservation is a unique 
advantage of DG, which is not satisfied by FVMs and classical FEMs.  We also observe that 
the iteration number in each time slice can be as small as 1 or 2, which further assists the 
computational efficiency of DG powered by dynamic mesh adaptation.   
 
 
6. Discussion and Conclusions  
 

In this paper, the four primal discontinuous Galerkin methods (DG) are formulated to 
construct efficient solutions of parabolic type partial differential equations.  Several 
representative example problems in chemical engineering are solved using DG.  The 
numerical results show the capability of DG to solve a set of rather diverse time-dependent 
problems in chemical engineering.  In addition, for mass transfer simulation, DG treats both the 
convection-dominated and the diffusion-dominated systems very well.  For heat transfer 
simulation, DG is effective for both the convection-dominated and the conduction-dominated 
problems.  DG has less numerical diffusions compared with other classic algorithms.  Due to 
its discontinuous nature of approximation spaces, DG preserves the steep moving fronts and 
allows highly varied and jumped problem coefficients.   

 
A highlight of this paper is to show that DG possesses substantial advantages on 

adaptive mesh modification over finite difference methods, finite volume methods and classic 
finite element methods.  Effective adaptivity allows the attainment of accurate solutions with 
substantially less computational efforts.  In this paper, adaptive strategies, especially the 
dynamic mesh modification, are formulated and studied for DG methods guided by 
mathematics-based and physics-driven a posteriori error estimators.  Numerical examples 
demonstrate the advantage of adaptive approaches.  In particular, we see that the flexibility of 
DG allowing non-matching meshes substantially simplifies the implementation of the mesh 
adaptation as the local element refinement is independent of neighborhood elements.  In 
addition, this flexibility increases the efficiency of adaptivity because the unnecessary areas do 
not need to be refined just for maintaining the conformity of the mesh.  Moreover, DG errors 
are localized; in other words, there is less pollution of errors. This leads to a more effective 
adaptivity for DG than for nonconforming methods.  Because of this, we see that DG with 
adaptivity sharply captures local physical phenomena.  It is also observed that the proposed 
dynamic strategy performs very well for transient problems with a long period of simulation 
time in aspects of both the accuracy and the computational cost.   
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