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Abstr act

A tool for the order reduction of differential algebraiaiations (DAES) is outlined in this report. Through the
use of an equation dependency analysis and nonlinear functiaxapgtion, the algebraic equations can be
divided into sets that require implicit or explicit sadutis. If all of the algebraic variables can be solved or
approximated explicitly, the DAE becomes a set of ordiniiffgrential equations (ODES). As a test case for the
theory, a dynamic equilibrium binary distillation colnnrmodel is analyzed with the generalized approach. The
index 1 DAE model of 52 differential and 233 algebraic statesduced to an ODE set of 26 differential states.
Through simulations, the resulting ODE model solution is fdorgk in agreement with the original DAE model
solution.

1. Introduction

DAEs consist of differential equations and algebraic eqosti In the general form, the DAE problem is as
follows:

f(z,z,t) =0 1)

wherez is a vector of variables ands a scalar. The DAE is nonlinear when the vettera nonlinear function
of the derivative of, z, ort. In order for the problem to be a DAE, at least onth@fcoefficients for the
derivative ofz must be zero. The DAE can be grouped into differértjuationsff and algebraic equationg)(
The variables are also divided into differential varial§ and algebraic variableg)(

f(x,x,y,t) =0
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Large-scale nonlinear DAE models arise in object-oriesimtilators, electrical circuit models, and many other
models of physical processes. Reformulating the DAE mottehimequivalent ODE model is desirable because
of certain numerical advantages. These advantagesiéapplication of nonlinear model reduction techniques
(Hahn and Edgar, 2002), no requirement for consisterdliniinditions, and no numerical challenges associated
with DAE systems of index greater than one (Brenarglt1989).

One method of converting a DAE to an ODE is to solve thebahic equations implicitly. Since the implicit
solution of a large number of algebraic equations is cortipn#dly expensive, variables that can be solved
explicitly are removed from the sg{Hangos and Cameron, 2001). This partitioning and precedetengr is
performed by analyzing an incidence matridefined by
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0 otherwise
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The assignment of variables to equations is made by penfgmmiv operations that transfordrinto a matrix
with entries on the diagonals. Obtaining a precedence andgpartitioning can be done using a manual directed
graph (digraph) as a graphical approach, using matrix mietiogoroduce a block diagonal lower matrix (Tarjan,
1972), or through tearing (Borutsky and Cellier, 1996). Thetmigues attempt to maximize the number of



algebraic variables that can be solved explicitly. Howewé problem is NP complete, meaning that all
possible combinations of variables must be attempteddaafimaximum set of explicit equations (Carpanzano,
2000). Another technique for order reduction is through retaxaf the algebraic states (Otter, et. al., 1996).
Relaxing directly generates a Gaussian elimination scldrea the algebraic equations are linear or made linear.

2. Equation Dependency Analysis

The method proposed in this work differs from previous vimyrlanalyzing a dependency matkix® instead of
the incidence matrid. It will be shown thaM™ can reveal more information about variable dependencies.

The dependency matrM ™ is derived by first linearizing the DAE.

AX'+Bx'+Cy'+at' =0 @
Dx'+Ey'+pt' =0
The prime indicates deviation from reference values X.esX — X, ). A, B, C, D, andE are coefficient

matrices andt andp are coefficient vectors. The reference values aeetsgl to give non-zero coefficients for
the deviation variables. Since the selection of referealess is arbitrary, the coefficients can be arbiyrar
selected to be 1 if the equation contains the variabl® atiderwise. In this case the matgxs equivalent to the
incidence matrix). Rearranging and combining the linear differential andoa#ge equations results in the

following matrix form:
A C|Xx B a|X
o eyl sl
E|ly D Bt

The dependency matrM ™ reveals the solution dependencies among the linearized eguation

M‘l—AC_1 6
=0 E (6)

The variable dependency informationMi* can be illustrated by a linear systemfof=b. WhenA is
invertible, the solution ta is A™b. Each element of the vectois computed from the corresponding rowAdt;
and the vectob.

X, :ZA_lijbj (7)
i

However, the solution & is independent df; if A'lij =0 U j#i. Ifx is independent df; then it is also
independent of equatign The dependencies in the linear system also apply t@thesponding nonlinear
system. Therefore, linearizing the DAE reveals thecgira of the nonlinear system dependencies.

The matrixM™ can be converted to lower triangular block diagonal faith Tarjan’s algorithm [8]. Each block
along the diagonal is a set of algebraic equations thairee simultaneous solution. Explicit approximations to
implicit solutions can be attempted to further reducéXAE order (Bosley, 1996).

3. Case study with a binary distillation column model



A binary distillation column model, described in Appendix Aemployed to show a practical application of the
DAE to ODE model conversion. The DAE model has 52 difféaéequations and 233 algebraic equations. The
independent variables are:

T
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During the linearization step, the reference values deeted to give non-zero coefficients for the deviation
variables. Since the reference values are arbitfagyndan-zero coefficients are shownXoif the equation
contains the variable and 0 otherwise.
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The non-zero values & show the dependencies between the variables and equati@naor¥hero values of
M in lower triangular block diagonal form are shown belowhwle corresponding variable order.
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Equations 1-3 indicate that T,¥ and B** must be solved simultaneously since the corresponding equations
form one block. The equations fog®® and B** can be explicitly substituted into the bubble point tempegat
equation.

P =X\ F)Asat (M+@- XA)PBSat (T) (11)



For the cyclohexane / heptane binary mixtures, an explinpeéeature solution is approximated by a second order
polynomial in composition.

T=c +C,Xx, + CsXA2 (12)

The vectorc was calculated with a least squares fit with datan fitee setsx D[O 1] to be

c= [385.42 -21.57 3.73dT. The polynomial fit has a mean sample error of 0.012dKaamaximum
sample error of 0.04 K.

The molar flow rates can form the last block along the dialgoBince the molar flow rate equations are linear,
they can be solved explicitly. After solving the flow rates dependency matrix indicates that the differential
equation variables can now be solved explicitly. If extranatebraic equations were present in the model, they

could be identified at this point since the equations'cfprandh have no further dependencies. By explicitly

solving all of the algebraic equations, the model is in BE@rm. In this form, nonlinear model reduction
techniques can be applied to further reduce the numlulif@fential states.

5. Nonlinear model reduction

As an ODE, the distillation column model is availableftather model reduction through balanced covariance
matrices or proper orthogonal decomposition (POD). P@B ahosen for this example and the number of
differential states was reduced to 26. Figure 1 showsatens composition after a 5% increase in reboiler
duty.
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Figure 1 - 5% Step Change in Reboiler Duty

The ODE model with 52 states approximates the 28% ®AE very well. The ODE model with 26
states also approximates the DAE model well but witarger offset in the steady-state value of
composition. ODE models with fewer than 20 stae$ormed poorly, indicating that there are attleas
20 dynamic degrees of freedom in the binary digtdh column model.

6. Summary

The order reduction of algebraic equations for DAEs is megaohrough an equation dependency analysis. As a
first step, the equation dependency on the variables is deegt oy linearizing the DAE and inverting the



coefficient matrix corresponding to the differential defiwed and algebraic variables. After a transformation to
lower triangular block diagonal form, the independent equatin systems of equations can be identified and
solved.

Linearize the set of DAEs

Compute the dependency matii;!

TransformM ™ to the lower triangular block diagonal form

Solve successive independent groups of variables given by sueddssks
Perform nonlinear model reduction techniques on the ODEs

arwNPRE

As a test case for the theory, an index 1 DAE model ddtadlation column was reduced to the ODE form and
further reduced with POD. Simulations confirmed that®DE model is a good approximation to the DAE
counterpart.
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Appendix A

Description
Dynamic binary distillation column model with equilibritstages

Diagram

Condenser

Distillate

Manipulated Variables (3)

me Feed rate (gm/sec)

my Reflux rate (gm/sec)

Q Reboiler heating rate (J/sec)

Differential States (52)

Xa Liguid mole fraction

h Specific enthalpy (J/mol)

Algebraic States (178)

Va Vapor mole fraction

XL Liquid mole fraction

T Temperature (K)

n, Vapor molar flow rate (mol/sec)

n, Liquid molar flow rate (mol/sec)

hy Specific vapor enthalpy (J/mol)

h, Specific liquid enthalpy (J/mol)

P Saturation pressure of compoyr(@a)
Other

n. Liquid molar holdup (mol)

MWE(Xa) Molecular weight of feed stream (gm/mol)
MWRg(Xa) Molecular weight of reflux stream (gm/mol)
P Column pressure (Pa)

hy(T) Specific vapor enthalpy of compoun@/mol)

hy;(T) Specific liquid enthalpy of compoundJ/mol)



Differential Equations
Component A mole balance at each stage

X—lynv+xr'1—yr'1v—xr'1+x Moo
A nL An in An Lin Aout out Aot Lout Ateed Mered (XA)

Energy balance at each stage

1 _ . . :
h :_[h/i" nvin +hLinnLin _hvom nvoul _h/om nLOUt +[h

n.

mfeed

Algebraic Equations
Raoult’s law for VLE

X, P
Ya=—rg—
Liguid mole fraction equation
h —
X, = n,
h. —h,

Bubble point temperature equation

P=x,P,™ +@-x,)P,~
Vapor molar flow rate equation

hvoul = (ﬁvin + hLin )(1_ XL)
Liguid molar flow rate equation

., = (nv N, )XL
Vapor enthalpy equation

h/ = yAh\/A(T) + (1_ yA)h\/B (T)
Liquid enthalpy equation

hL = XAhLA(T) + (1_ XA)hLB (T)
Pure componentsaturated vapor pressure equation (DIPPR database)

P :exr{A+$+Cln(T)+ DTEj

J

= W] ' (Q)}
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