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Abstract: Chemical engineering science has recognized the necessity of integrating 
process design and control; however, few steps have been taken in this direction in polymer 
science. In this work, a Mixed-Integer Dynamic Optimization approach is used for the 
simultaneous design and control of a styrene polymerization reactor. Our goal is to design 
the process and its control system in order to produce two polymer grades, which are 
defined in terms of the number average molecular weight (Mn). The process design 
involves reactor and initiator selection, and the two steady state operating points. The 
control system consists of a feedforward-feedback control scheme, which is designed to 
achieve optimal grade transition operation. The control system design includes optimal 
pairings between controlled and manipulated variables and controller’s tuning parameters 
for PI feedback controllers, and the best trajectories of the feedforward controllers. 

Keywords: Simultaneous design and control; grade transition optimization; polymerization 
reactor; mixed-integer dynamic optimization. 

INTRODUCTION 

 Polymer synthesis and modification is a very important industry, producing nearly 
200 million tons per year of a variety of polymers. Materials produced vary from high-
volume resins sold at approximately one dollar per kilogram to high-priced specialty 
polymers at several thousand dollars per kilogram. During the past years, increased costs 
of energy, more stringent environmental regulations, and intense worldwide competition 
have motivated strong interest in optimizing plant designs and operating conditions. 

 Polymers have many application areas, and each area needs different 
specifications. In order to fulfill these requirements, different grades of the same polymers 
are usually produced. Continuous plants commonly manufacture these grades in the same 
equipment by switching the operating points. This operation, called grade transition or 
grade changeover, may be performed rather frequently so as to satisfy the changing market 
demands. Therefore, the minimization of off-specification product during grade transition 
and the transition time is essential for a lucrative process. This is why, in addition to steady-
state optimization, intense research has been performed regarding optimal grade transition 
operation of polymerization reactors. For instance, McAuley and McGregor (1992) 
developed optimal transition policies among three polyethylene grades in a gas-phase 
reactor. Using dynamic optimization they calculated the best profiles of the input variables. 



They also presented a very interesting analysis of different objective functions for the grade 
transition optimization. Takeda and Ray (1999) developed optimal transition policies for 
polyolefin loop reactors, comparing results with and without constraints in the state 
variables. Cervantes et al. (2002) carried out an open loop optimization of grade transitions 
in a low-density polyethylene plant. They calculated optimal profiles of butane feed and 
purge streams in order to minimize transition time. However, the usual approach in these 
studies is to analyze the grade transition between steady-states that are fixed in advance, 
assuming that some criteria, like steady-state optimization, has been used to determine 
them. Although some works combined steady-state optimization with optimal grade 
transition operation (Yi et al., 2003), these topics were treated sequentially, and therefore 
the influence of the optimal steady-states on the grade transition was not analyzed. The 
more interesting problem of studying the effect of the steady-states on the optimal transition 
policies has rarely been explored. In this situation it would be possible to find a sub-optimal, 
though still reasonable steady state, which allowed a more convenient grade changeover, 
resulting in a better process performance as a whole. 

 Optimal transition policies, which minimize economic loss during grade 
changeovers while keeping product quality within desired standards, can only be 
implemented with a control system that guarantees well-controlled operating conditions. 
Polymerization processes show several features that make process control a challenging 
task, such us high non-linearity, complex flow and heat-transfer dynamics, and a strong 
dependence of molecular properties on operating conditions. This has motivated plentiful 
work about control of polymerization reactors. Different control systems have been 
proposed, from classical PID controllers to modern non-linear model predictive control 
(NLMPC) schemes (Embiricu et al., 1996). A well-designed control system that ensures a 
safe operation envelope is extremely important for plant operation in general, and specially 
for grade changeovers. For instance, it is common to perform overshoots or undershoots 
aiming to reduce the transition time, which could lead to process runaway if they are not 
properly controlled. This is why several authors combined grade transition optimization with 
process control (i.e. Chatzidoukas et al., 2003; Wang et al. 2000; Na and Rhee, 2002; 
Bindlish and Rawlings, 2003; BenAmor et al., 2004). In most of these works, however, a 
sequential approach has been used to deal with process design and process controllability. 
For instance, Wang et al. (2000) calculated off-line optimal transition policies for an 
ethylene slurry polymerization reactor, and then applied a NLMPC to implement these 
policies in face of uncertainties in model parameters. Na and Rhee (2002) used a 
multivariable NLMPC to track set points that had been previously determined in a styrene 
solution polymerization. 

 The sequential methodology does not consider the strong interaction existing 
between process design and its operability. Process control is an inherent property of its 
design, and has a great influence on process economics. The necessity of incorporating 
control aspects in the early stages of process design has been recognized in other fields of 
chemical engineering (Bansal et al., 2002), but polymer engineering science is now making 
its first efforts in this direction. One of these works is that of Chatzidoukas et al. (2003), who 
performed a simultaneous control structure selection and grade transition optimization in a 
gas-phase olefin polymerization reactor. However, they did not include equipment design 
and steady state operating conditions in their optimization problem 



 In this work a Mixed – Integer Dynamic Optimization (MIDO) approach is applied to 
the simultaneous design and control of a continuous stirred tank reactor (CSTR) for styrene 
polymerization. Process design includes reactor unit and peroxide initiator selection, and 
the steady-state operating points for producing two polymer grades. At each steady-state, 
the only specification is the polymer number average molecular weight (Mn). The control 
system is designed to achieve an optimal transition between grades. It consists of a 
feedforward-feedback multivariable scheme. With polymer grades as the only 
specifications, the process and the control system are designed simultaneously to achieve 
optimal grade transition operation. The control system design includes optimal pairings 
between controlled and manipulated variables and controller’s tuning parameters for PI 
feedback controllers, and the best control trajectories of the feedforward controllers. 

PROCESS DESCRIPTION AND MATHEMATICAL MODEL 

 Figure 1 represents the process studied in this work, the solution polymerization of 
styrene in a jacketed CSTR. Reactor inputs consist of styrene monomer, initiator and 
solvent streams at the feed temperature Tf; polystyrene, solvent and unconverted monomer 
and initiator compose the reactor effluent, at temperature T. Water is used to cool the 
reactor. The mathematical model used in this work is based on the one published by Russo 
and Bequette (1998), which comprises the following kinetic mechanism: 

Peroxide decomposition dI 2 Rk→  (1)

Initiation 1
iR M Rk+ →  (2)

Propagation 1
pR M R 1, ,n n
k n++ → = ∞K  (3)

Termination by combination tcR R P 1, , 1, ,n m n m
k n m++ → = ∞ = ∞K K  (4)

 

where I is the peroxide initiator, R is the initiation radical, M is styrene monomer, Rn is a 
macroradical of chain length n and Pn is a polymer molecule of chain length n; kd, ki, kp and 
ktc are the kinetic constants of initiator decomposition, initiation, propagation and 
termination, respectively. Monomer thermal initiation and gel effect are neglected in this 
model. Assuming quasi steady-state of radicals and constant physical properties of the 
reaction mixture, the differential equations resulting from the mass and energy balances 
are: 

Initiator ( )i f d
1dI Q I QI k I

dt V
= − −  (5) 

Monomer ( )m f p 0
1dM Q M QM k M

dt V
λ= − −  (6) 
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Figure 1. Polymerization reactor scheme. 
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 In the present model, monomer conversion (x), polymerization rate (Pr) and 
polymer number average molecular weight (Mn) are calculated according to Eqs. (12) – 
(14), respectively. 
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M
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In eqs (5) – (14), M, I, and λ0 are the monomer, initiator, and global radical concentrations; 
T and Tj are the reactor and jacket temperatures; M0 and M1 are the 0th and 1st order 
moments of the polymer chain length distribution; Qi, Qm, Qs, and Qj are the flow rates of 
initiator, monomer, solvent and coolant. The total flow rate Q is the sum of the feed 
streams. Subscript f denotes feed conditions. The initiator decomposition efficiency is 
variable “efic”, and MwM is the monomer molecular weight. 

Control system 

 The control system is composed by a multivariable feedforward-feedback control 
scheme (see Figure 1), plus a ratio controller. Reactor and jacket temperatures, 
polymerization rate and Mn are considered as possible controlled variables. The variables 
that could be manipulated in this reactor are monomer, initiator and coolant flow rates. 
Solvent flow rate is attached to the initiator and monomer flow rates through a ratio 
controller, which keeps a constant solvent volume fraction of 50%. Feedforward controllers 
are used for property control (Mn), and feedback PI controllers for reactor and jacket 
temperatures, polymerization rate and Mn control. The overall action on each manipulated 
variable is composed by the feedforward signal plus the action of the PI loops in which that 
variable is involved (see Figure 1). For this work it was established that feedforward 
controllers must manipulate all control efforts, but optimal pairing between manipulated and 
controlled variables for the PI controllers must be determined. The allowed alternatives are 
shown in the PI superstructure presented in Figure 1. 

 The equation that describes the control action on the manipulated variables is 



 ( ) ( )
4

'
, , , ,

,1 0

1
t

i i ff i j j set j j set j
i jj

U U K Y Y Y Y dt
τ

=

 
 = + − + −
 
 

∑ ∫  (15) 

In this equation, Ui is the i-th manipulated variable (U1 = Qj, U2 = Qi, U3 = Qm), and Yj is the 
j-th controlled variable (Y1 = T, Y2 = Tj, Y3 = Mn, Y4 = Pr); Yj,set is the set point of the Yj 
variable. Ui,ff stands for the feedforward controller’s action. The summation represents the 
addition of the signals of all possible PI loops. 

 In order to account for operative constraints on the manipulated variables, the 
following saturation function was included: 
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 Eq. (16) was smoothed as shown by Eq. (17). 
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Parameter ξ determines the “smoothness” of the expression defined by Eq. (17). The 
greater ξ is, the more Eq. (17) resembles Eq. (16). In this work we used 610ξ = . Finally, Eq. 
(18) is used to determine the solvent flow rate so as to obtain the required solvent volume 
fraction of 50% 

 s i mQ Q Q= +  (18) 

DESIGN PROBLEM 

 Continuous polymer plants usually alternate between the productions of several 
polymer grades. In this work, however, we will focus on the grade transition operation 
between two polystyrene grades, called grades A and B. These grades will be defined by 
their number average molecular weight. The process and control system will be 
simultaneously designed to minimize off-specification product during grade transition from 
grade A to B. At the same time, dynamic feasible operation in terms of product 
specifications and process constraints must be achieved. 

 Process design includes the selection of optimal reactor size, initiator, and steady-
state operating points. The control system design will provide optimal trajectories for the 



feedforward controllers, the “best” pairings between controlled and manipulated variables 
for the PI controllers, as well as the PI controllers’ tuning parameters. 

Process design variables 

 Two of the process design items involve discrete decisions. One of them is the 
polymerization reactor. The design of this unit is limited because of equipment availability. 
Only three alternatives are possible, whose features are listed below: 

R1 R2 R3 
V = 2000 L V = 3000 L V = 3500 L 

Vj = 2208 L Vj = 3312 L Vj = 3864 L 
 

 The other discrete decision is the initiator type. Through an appropriate initiator 
selection, it is possible to enhance reactor performance to increase production, achieve 
certain molecular properties or improve controllability. With the approach used in this work, 
it is possible to provide any finite number of initiator alternatives, and then model the 
selection of one or more initiators. In this work, the initiators allowed are 
azobis(isobutyronitrile) (AIBN) and tert-butyl peroxybenzoate (TBPB), and only one of them 
may be selected. AIBN is more reactive than TBPB. Initiator selection is modeled by means 
of binary variables (yAIBN and yTBPB). These variables are employed to select the pre-
exponential factor and the activation energy of the initiator decomposition constant 
corresponding to the chosen initiator: 

 ( )dE RT
d dk A e −=  (19) 

 d AIBN AIBN TBPB TBPBA A y A y= +  (20) 

 d AIBN AIBN TBPB TBPBE E y E y= +  (21) 

 AIBN TBPB 1y y+ =  (22) 

yAIBN and yTBPB take the value of 1 if the corresponding initiator is selected, or 0 otherwise. 
The integer constraint represented by Eq. (22) is used to specify the selection of one of the 
initiators. 

 The other process design variables are the operating temperatures T, Tj and Tf, and 
the flow rates Qj and Qi at both steady-states. Tjf and Qm are known in advance, and Qs is 
determined by Qm and Qi as shown by Eq. (18). Process model equations, product 
specifications (Mn is known at each steady-state) and other process restrictions result in 



only three degrees of freedom among the mentioned steady-state design variables for the 
optimization problem. 

Control system design variables 

 The control system design includes calculating the optimal profiles of the 
feedforward signals (Ui,ff in Eq. (15)). These are calculated by the optimizer as series of 
piecewise constant values, in order to optimize the design objective function. For the PI 
controllers, design variables involve the selection of the optimal parings between controlled 
and manipulated variables, the controllers´ tuning parameters (Ki,j and τi,j in in Eq. (15)) and 
the set points of the controlled variables (Yj,set in Eq. (15)). The latter are treated as 
piecewise constant optimization variables, while Ki,j and τi,j are considered as time invariant. 
The selection of the matching between controlled and manipulated variables is modeled by 
setting the following constraint to the gains of the PI controllers: 

 
, ,, , ,i j i j

lb ub
i j i j i jK y K K y≤ ≤  (23) 

The binary optimization variable yi,j takes the value of 1 if the i-th manipulated variable is 
matched with the j-th controlled variable, or 0 otherwise. In the latter case, Eq. (23) forces 
the controller gain to be zero, and hence the action of that control loop disappears. The 
control superstructure would yield 212 = 4096 control alternatives, identified by the 12 binary 
variables that represent the possible combinations between the 4 controlled variables and 
the three manipulated variables. However, as can be seen in Figure 1, some of these 
pairings were disregarded in advance, based on process knowledge and previous 
simulations: 

 Controlling Tj manipulating Qi (y2,2 = 0) 

 Controlling Tj manipulating Qm (y3,2 = 0) 

 Controlling Mn manipulating Qj (y1,3 = 0) 

The multivariable scheme considered in this work allows any controlled or manipulated 
variable to be involved in more than one loop simultaneously. The lengths of the time 
intervals for the piecewise constant control variables are also considered as optimization 
variables. 

Product specifications and process constraints 

 As mentioned before, grade specifications, defined in terms of the polymer Mn, 
must be satisfied at steady-states. The number average molecular weight of grade A is 
MnA = 50000 g/mol, and that of grade B is MnB = 40000 g/mol. Besides, monomer 
conversion at steady-state must satisfy the constraints shown by Eq. (24) 



 0.18 , 0.50A Bx x≤ ≤  (24) 

The lower limit represents an acceptable limit for profitable production, while the upper 
bound was selected to avoid high viscosities in the reaction mixture. 

 In order to avoid significant monomer thermal initiation, upper bounds for the 
reactor temperature must be set. Those bounds were selected as 100 ºC and 110 ºC for the 
steady-state and the grade transition operations, respectively. Another important point to 
consider is that this type of process usually presents steady-state multiplicity. In order to 
exclude low conversion steady-states, a lower bound of 70 ºC for the steady-state reactor 
temperature was selected. Steady-state temperatures for production of both polymer 
grades (A and B) and reactor temperature during transition must then verify Eqs. (25) and 
(26), respectively 

 o o
A B70 C , 100 CT T≤ ≤  (25) 

 ( ) o110 CT t ≤  (26) 

Besides, an upper limit for the jacket temperature at any time was selected so as to keep a 
safety margin with respect to the boiling point of water, as shown in Eq. (27). 

 ( ) o
j 95 CT t ≤  (27) 

 Notice that reactor and jacket temperature constraints (Eqs. (26) and (27)) during 
grade transition are path constraints. This class of constraint was dealt with by converting 
them into end-point constraints, following the procedure reported by Bansal et al. (2002). 

 Additional process restrictions involve monomer flow rate at steady-states and 
cooling fluid inlet temperature, which are fixed at 0.105 L s-1 and 22ºC, respectively. The 
feed temperature is not known in advance, but it should be the same at both steady states. 
An upper bound for this variable was set in order to keep it within the typical values 
reported in the literature, as shown by Eq. (28). 

 o
f 67 CT ≤  (28) 

 Additional process restrictions involve monomer flow rate at steady-states and 
cooling fluid inlet temperature, which are fixed at 0.105 L s-1 and 22 ºC, respectively. The 
feed temperature is not known in advance, but it should be the same at both steady states. 



Objective function 

 The objective function for the simultaneous process and control system design is 
shown by Eq. (29). 

 ( )( )2
B

0

Gt Mn Mn

ft

t dt= −∫  (29) 

where MnB is the number average molecular weight of grade B. An objective function like 
Eq. (29) not only minimizes an off-specification property, but also the transition time 
because the final transition time (tf) is treated as an additional optimization variable 
(Chatzidoukas et al., 2003). 

OPTIMIZATION PROBLEM FORMULATION 

The simultaneous process – control system design that has been presented constitutes a 
Mixed-Integer Dynamic Optimization (MIDO) problem, which can be posed as follows 
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hd and ha are the model differential – algebraic system, h0 is the set of initial conditions and 
hy is the set of pure integer equalities; ge and gq are end-point and time-invariant 
inequalities, respectively, and D is a set of three discrete values representing allowed 
reactor sizes. The set ha includes the model differential equations set to zero, in order to 
define both steady-states. U(t) is the set of time-varying optimization variables (7 elements), 
z is the set of time-invariant decision variables (29 elements), y is a vector of 11 binary 



variables, and d is a discrete variable (reactor volume); xd(t) are the differential state 
variables, xa(t) are the algebraic variables and p are the model parameters. 

 Additional constraints were also included involving controlled and manipulated 
variables, and time derivatives for the states. These constraints ensured that the target 
operating point (where grade B is produced) was actually reached. The resulting MIDO was 
solved with gPROMS/gOPT package (Process Systems Enterprise Ltd.). 

RESULTS AND DISCUSSION 

 The optimal process design is shown in Table 1. As may be seen, the smallest 
reactor and the faster initiator were selected. Besides, the process was designed to operate 
at the highest allowed temperature at both steady-states. It should be noted that constraints 
on the feed temperature and monomer conversion are satisfied. 

 The optimal PI control structure is schematized in Figure 2, while the corresponding 
optimal values for the controllers’ gains and integral times are shown in Figure 3. Figure 4 
shows the polymer Mn and the Mn set point trajectories. It can be seen that the optimally 

Table 1. Process optimal design.
 
Reactor Unit: R1 (2000 L)   Initiator: AIBN 

 Grade A Grade B 

T 100ºC 100ºC 

Tf 66ºC 

Tj 54ºC 45ºC 

Qj 0.079 L s-1 0.138 L s-1 

Qi 2.51 10-3 L s-1 3.48 10-3 L s-1 

Conversion 33% 37% 

 

Qj

Qi

Qm

T

Tj

Mn

Pr 
Figure 2. Optimal pairing between manipulated and controlled 

variables. 



designed control system drives Mn to grade B specification in approximately 15 minutes, a 
very short time in comparison with the reactor residence time of 2.5 h. As this property is 
kept almost constant thereon, the amount of off-specification product is minimal. The 
optimal profile of the Mn set point resulted in a low value at the beginning of the transition, 
where a rapid descent of this property is needed. Afterwards, the set point rises when the 
Mn is about to reach the target value, probably to minimize the undershoot, and then settles 
at grade B Mn. 

 Figure 5 depicts reactor temperature and reactor temperature set point. Please 
note the difference in the time scales with respect to Figure 4. A rapid variation of the 
reactor temperature at the beginning of the transition is observed. This time coincides with 
the one needed to take the polymer Mn to the target value. Afterwards, the control system 
slowly takes reactor temperature to its set point value. It can be seen that the maximum 
reactor temperature of 110 ºC is never violated. Notice the long time needed to reach the 
steady state value of the reactor temperature, in comparison with the polymer Mn. It should 
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Figure 3. Optimal values of the controllers’ gains and integral times. 

 

Figure 4. Time profiles of the polymer Mn and the Mn set point. 
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be remembered, however, that the design function consisted only in minimizing off-
specification Mn. This long time recovery of the reactor temperature was the best way to 
fulfill this objective. A similar tendency was observed for the jacket temperature profile. 

 Figure 6 shows the time profile of one of the manipulated variables, the initiator flow 
rate. Notice that the grade transition starts at time 0. Sudden variations may be observed 
during the first 20 minutes, approximately the time needed to stabilize the polystyrene Mn at 
its target value. Then, this flow rate presents a slow approach to the steady-state operating 
point. The other manipulated variables show similar profiles. It should be mentioned that the 
sudden variations of flow rates are a common practice in grade transition operation. 
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Figure 5. Reactor temperature and reactor temperature set point profiles. 

Figure 6. Initiator flow rate profile.
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CONCLUSIONS 

 In this work a Mixed-Integer Dynamic Optimization approach was successfully used 
for the simultaneous design and control of a solution styrene polymerization reactor. In this 
way, the strong interaction between process design and control was taken into account. 

 The process and the control system were optimally designed to achieve optimal 
transition operation between two polystyrene grades. Process design variables included 
discrete decisions (reactor and initiator type selections), as well as continuous operating 
variables (i.e. steady-state reactor temperatures and process flow rates).  

 A multivariable feedforward-feedback control scheme was optimally determined 
simultaneously with the process design. Design variables included discrete decisions 
(optimal pairing between controlled and manipulated variables), time-invariant continuous 
variables (PI controllers’ tuning parameters) and piece-wise constant ones (optimal profiles 
for the feedforward controllers and PI set points). The optimal multiloop PI structure 
involved three manipulated variables that in combined action controlled four process 
variables. The optimal process and control system design allowed a grade transition with 
minimal off-specification polymer. At the same time, process constraints at steady-state and 
during grade transition were rigorously satisfied. 

 Future work will include steady-state economic objectives together with the 
transition optimization in the design objective. At the same time, multiple grade transition 
sequences and more realistic polymer grade specifications will be addressed. 
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