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Abstract 
 
Control structure design deals with the structural decisions of the control system, including 
what to control and how to pair the variables to form control loops. Although these are very 
important issues, these decisions are in most cases made in an ad-hoc fashion, based on 
experience and engineering insight, without considering the details of each problem. In the 
paper, a systematic procedure for control structure design for complete chemical plants 
(plantwide control) is presented. It starts with carefully defining the operational and 
economic objectives, and the degrees of freedom available to fulfill them. Other issues, 
discussed in the paper, include inventory and production rate control, decentralized versus 
multivariable control, loss in performance by bottom-up design, and a definition of a the 
“complexity number” for the control system. 
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1. Introduction 

A chemical plant may have thousands of 
measurements and control loops. In practice, the 
control system is usually divided into several 
layers, separated by time scale, including (see 
Figure 1) 

 
•  scheduling (weeks)  
•  site-wide optimization (day)  
•  local optimization (hour)  
•  supervisory (predictive, advanced) control 

(minutes) 
•  regulatory control (seconds) 

 
We here consider the lower three layers. 
The local optimization layer typically recomputes 
new setpoints only once an hour or so, whereas the 
feedback layers operate continuously. The layers 
are linked by the controlled variables, whereby the 
setpoints are computed by the upper layer and 
implemented by the lower layer. An important 
issue is the selection of these variables. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Typical control hierarchy in a chemical 
plant. 



 
Control structure design deals with the structural 
decisions that must be made before we start the 
controller design, and involves the following tasks 
(Foss, 1973); (Skogestad and Postlethwaite, 1996): 
1. Selection of manipulated variables m 

(``inputs'')  
2. Selection of controlled variables (``outputs''; 

variables with setpoints) 
3. Selection of (extra)  measurements  (for control 

purposes including stabilization)  
4. Selection of control configuration (the 

structure of the overall controller that 
interconnects the controlled, manipulated and 
measured variables)  

5. Selection of controller type (control law 
specification, e.g., PID, decoupler, LQG, etc.).  

 
Control structure design for complete chemical 
plants is also known as plantwide control. In 
practice, the problem is usually solved without the 
use of existing theoretical tools. In fact, the 
industrial approach to plantwide control is still very 
much along the lines described by Page Buckley in 
1964 in his chapter on Overall process control.. 
The realization that the field of control structure 
design is underdeveloped is not new. Alan Foss 
(1973) made the observation that in many areas 
application was ahead of theory, and stated that  

“The central issue to be resolved by the 
new theories is the determination of the 
control system structure. Which variables 
should be measured which inputs should 
be manipulated and which links should be 
made between the two sets? There is more 
than a suspicion that the work of a genius 
is needed here, for without it the control 
configuration problem will likely remain 
in a primitive, hazily stated and wholly 
unmanageable form.  The gap is present 
indeed, but contrary to the views of many, 
it is the theoretician who must close it.” 

A recent review of the literature on plantwide 
control can be found in Larsson and Skogestad 
(2000). In addition to Page Buckley and Alan Foss, 
important contributors in this area include George 
Stephanopoulos and Manfred Morari (1980-  ) 
(synthesis of control structures), William “Bill” 
Luyben (1975-  ) (“snowball effect”), Ruel Shinnar 
(1981-     ) (“dominant variables”), Jim Douglas 
and Alex Zheng (1985-     ) (hierarchical approach) 

and Jim Downs (1991-   ) (Tennessee-Eastman 
challenge process). 
 
This paper is organized as follows. First, we present 
an expanded version of the plantwide control 
design procedure of Larsson and Skogestad (2000). 
A systematic approach to plantwide control starts 
by formulating the operational objectives. This is 
done by defining a cost function J that should be 
minimized with respect to the Nopt optimization 
degrees of freedom, subject to a given set of 
constraints. In reminder of the paper we go through 
the procedure step by step with special emphasis 
on: 
 

•  Degree of freedom analysis  
•  Selection of controlled variables 
•  Inventory control  
•  Loss in performance by bottom-up 

design 
 
Finally, we discuss recycle systems and the so-
called snowball effect. 
 
 
 
2. Procedure for control structure design for 
chemical plants 

 
The proposed design procedure is summarized in 
Table 1. In the table we also give the purpose and 
typical model requirements for each layer, along 
with a short discussion on when to use 
decentralized (single-loop) control or multivariable 
control (e.g. MPC) in the supervisory control layer. 
The procedure is divided in two main parts: 
 
I. Top-down analysis, including definition of 

operational objectives and consideration of 
degrees of freedom available to meet these 
(tasks 1 and 2) 

II. Bottom-up design of the control system, 
starting with the stabilizing control layer 
(tasks 3, 4 and 5 above)  

 
The procedure is generally iterative and may 
require several loops through the steps, before 
converging at a proposed control structure. 
 

 



 
Table 1: A plantwide control structure design procedure 
 

STEP Comments, analysis tools and model 
requirements 

I. TOP-DOWN ANALYSIS:  
1. DEFINITION OF OPERATIONAL OBJECTIVES 
Identify operational constraints, and preferably identify a 
scalar cost function J to be minimized. 

 

2. MANIPULATED VARIABLES AND DEGREES 
OF FREEDOM  

Identify dynamic and steady-state degrees of freedom 
(DOF) 

May need extra equipment if analysis shows 
there are too few DOFs. 

3. PRIMARY CONTROLLED VARIABLES:  
Which (primary) variables c should we control? 
•  Control active constraints 
•  Remaining DOFs:  Control variables for which 

constant setpoints give small (economic) loss when 
disturbances occur. 

Steady-state economic analysis: 
•  Define cost and constraints  
•  Optimization w.r.t. steady-state  DOFs for 

various disturbances (gives active 
constraints)  

•  Evaluation of loss with constant  setpoints 

4. PRODUCTION RATE:  
Where should the production rate be set?  
(Very important choice as it determines the structure of 
remaining inventory control system.) 
 

Optimal location follows from steady-state 
optimization (step 3), but may move depending 
on operating conditions. 

 
II. BOTTOM-UP DESIGN:  
(With given controlled and manipulated variables) 
 

Controllability analysis: Compute zeros, poles, 
pole vectors, gains, disturbance gains, relative 
gain array, minimum singular values, etc. 

5. REGULATORY CONTROL LAYER. 
5.1 Stabilization  
5.2 Local disturbance rejection   
 
Purpose: “Stabilize” the plant using low-complexity 
controllers (single-loop PID controllers) such that 1) the 
plant does not drift too far away from its nominal 
operating point and 2)  the supervisor layer (or the 
operators) can handle the effect of disturbances on the 
primary outputs (y1=c). 
Main structural issue: What more (y2) should we 
control? 
•  Select  secondary controlled variables 

(measurements) y2  
•  Pair these with manipulated variables m, avoiding 

m’s that saturate (reach constraints) 

5.1 Pole vector analysis (Havre and Skogestad, 
1997) for selecting measured variables and 
manipulated inputs for stabilizing control. 
 
5.2 Partially controlled plant analysis. Control 
secondary measurements (y2) so that the 
sensitivity of states (x) to disturbances is small 
at intermediate frequencies. 
 
Model: Linear multivariable dynamic model. 
Steady state usually not important.  



6.  SUPERVISORY CONTROL LAYER. 
Purpose: Keep (primary) controlled outputs y1=c at 
optimal setpoints cs, using as degrees of freedom (inputs) 
the setpoints y2s for the regulatory layer and any unused 
manipulated variables. 
 
Main structural issue: Decentralized or multivariable 
control? 
 
6a. Decentralized (single-loop)  control  
Possibly with addition of feed-forward and ratio control. 
•  May use simple PI or PID controllers.  
•  Structural issue: choose input-output pairing 
 
6b. Multivariable control  
Usually with explicit handling of constraints (MPC) 
•  Structural issue: Size of each multivariable 

application  

6a. Decentralized:  
Preferred for noninteracting process and cases 
where active constraints remain constant.  
Pairing analysis: Pair on RGA close to identity 
matrix at crossover frequency, provided not 
negative at steady state. Use CLDG for more 
detailed analysis 
 
6b. Multivariable:  
1. Use for interacting processes and for easy 
handling of feedforward control 
2. Use MPC with constraints handling for 

moving smoothly between changing active 
constraints (avoids logic needed in 
decentralized scheme 5a) 

 
Model: see 5 

7. OPTIMIZATION LAYER 
Purpose: Identify active constraints and compute 
optimal setpoints cs for controlled variables.  
 
Main structural issue: Do we need real-time 
optimization (RTO)? 

Model: Nonlinear steady-state model, plus costs 
and constraints. 
  

8. VALIDATION Nonlinear dynamic simulation of critical parts 
 

Model requirements 
 
For the analysis of the control layers (step 5 and 6) 
we need a linear multivariable dynamic model. 
Since we are controlling variables at setpoints 
using feedback, the steady-state part of the model 
is not important (except for controller design with 
pure feedforward control). For the analysis of the 
optimization layer (steps 3 and 7) a nonlinear 
steady-state model is required. Dynamics are 
usually not needed, except for batch processes and 
cases with frequent grade changes.  For modeling, 
we need to distinguish further between the cases of  
 
1. Control structure design (this paper): 

“Generic” model sufficient  
2. Controller design (tuning of  controllers): 

Specific model needed  
 
Since a good control structure is generally 
insensitive to parameter changes, it follows that a 
“generic” model is generally sufficient for our 
purpose. This is a model where the structural part 
is correct, but where all the parameters may not 

match the true plant in question. A first-principle 
theoretical model, based on material and energy 
balances, that covers the whole plant is usually 
recommended for this. For the control system 
design in case 2 (which is not the concern of this 
paper) we need a ``specific” model, for example, 
based on model identification. Here it is usually 
sufficient with a local model for the application in 
question with emphasis on the time scale 
corresponding to the desired closed-loop response 
time (of each loop), or, if on-line tuning is used, 
we may not need any model at all.  

 
 Why not a single big multivariable controller?  
 
Most of the steps in Table 1 could be avoided by 
designing a single optimizing controller that 
stabilizes the process and at the same time perfectly 
coordinates all the manipulated variables based on 
dynamic on-line optimization. There are 
fundamental reasons why such a solution is not the 
best, even with tomorrows computing power. One 
fundamental reason is the cost of modeling and 
tuning this controller, which must be balanced 



against the fact that the hierarchical structuring 
proposed in this paper, without much need for 
models, is used effectively to control most chemical 
plants. 
 
 
3. Definition of operational objectives and 

constraints (step 1) 

The operational objectives must be clearly defined 
before attempting to design a control system. 
Although this seems obvious, this step is 
frequently overlooked. Preferably, the operational 
objectives should be combined into a scalar cost 
function J to be minimized. In many cases J may 
be simply selected as the operational cost, but 
there are many other possibilities. Other 
objectives, including safety constraints, should 
normally be formulated as constraints. 

 
4. Selection of manipulated variables and 

degree of freedom analysis (step 2) 

Degree of freedom analysis. We start with the 
number of dynamic or control degrees of freedom, 
Nm (m here denotes manipulated), which is equal to 
the number of manipulated variables. Nm is usually 
easily obtained by process insight as the number of 
independent variables that can be manipulated by 
external means from step 1 (typically, the number 
of adjustable valves plus other adjustable electrical 
and mechanical variables). Note that the original 
manipulated variables are always extensive 
variables.  

Next, we must identify the Nopt optimization degrees 
of freedom, that is, the degrees of freedom that 
affect the operational cost J.  In most cases the cost 

depends on the steady state only, and Nopt equals 
the number of steady-state degrees of freedom Nss. 

To obtain the number of steady-state degrees of 
freedom we need to subtract from Nm: 
 
•  N0m = the number of manipulated (input) 

variables with no steady-state effect (or more 
generally, with no effect on the cost). 
Typically, these are “extra” manipulated 
variables used to improve the dynamic 
response, e.g. an extra bypass on a heat 
exchanger.    

•  N0y = the number of (output) variables that 
need to be controlled, but which have no 
steady-state effect (or more generally, no effect 
on the cost). Typically, these are liquid levels 
in holdup tanks.   

 
and we have 
 
Nss = Nm – (N0m + N0y) 
 
Example 1. The integrated distillation process in 
Figure 2 has Nm=11 manipulated variables 
(including the feedrate), and N0y = 4 liquid levels 
with no steady-state effect, so there are Nss = 11 - 4 
= 7 degrees of freedom at steady state. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2. Degrees of freedom for integrated distillation process (Example 1). 

Nm  = 11 (incl. feed),   N0y  = 4 (levels),   Nss = 11 – 4 = 7



The optimization is generally subject to constraints, 
and at the optimum many of these are usually 
“active”. The number of ``free'' (unconstrained) 
degrees of freedom that are left to optimize the 
operation is then Nopt – Nactive. This is an important 
number, since it is generally for the unconstrained 
degrees of freedom that the selection of controlled 
variables (task 1 and step 3) is a critical issue.  
 
Need for extra equipment (design change). In 
most cases the manipulated variables are given by 
the design, and a degree of freedom analysis should 
be used to check that there are enough DOFs to 
meet the operational objectives, both at steady state 
(step 2) and dynamically (step 5). If the DOF 
analysis and/or the subsequent design shows that 
there are not enough degrees of freedom (either for 
the entire process or locally for dynamic purposes), 
then degrees of freedom may be added by adding 
equipment. This may, for example, involve adding 
a bypass on a heat exchanger, or adding an extra 
heat exchanger or a surge tank. Note that it is not 
only the number of variables that is important, but 
also their range. If a manipulated variable saturates, 
then it is effectively lost as a degree of freedom 
 

 

5.  What should we control? (steps 3 and 5) 

A question that puzzled me for many years was: 
Why do we control all these variables in a chemical 
plant, like internal temperatures, pressures or 
compositions, when there are no a priori 
specifications on many of them? Intuitively, we 
need to control the “dominant” variables for the 
process. The answer to this question is that we first 
need to control the variables directly related to 
ensuring optimal economic operation (these are the 
primary controlled variables y1=c in step 3): 
 
•  Control active constraints  (Maarleveld and 

Rijnsdorp, 1971; Skogestad, 2000) 
•  Select unconstrained controlled variables so 

that with constant setpoints the process is kept 
close to its optimum in spite of disturbances 
and implementation errors. (Skogestad, 2000) 
These are the less intuitive ones, for which the 
idea of self-optimizing control (see below) is 
very useful. 

 

In addition, we need to control variables in order to 
achieve satisfactory regulatory control (these are 
the secondary controlled variables y2 in step 5): 
 

•  With the regulatory control system in 
place, the plant should not drift too much 
away from its desired steady-state 
operation point. This will reduce the effect 
of nonlinearity, and enable the above 
supervisory control layer (or the operators) 
to control the plant at a slower time scale. 
Preferably, this “basic” control layer 
should be able to work for a wide range of 
primary control objectives. 

 
 
 
In particular, we should 
 

•  Control unstable/integrating liquid levels. 
This consumes steady-state degrees of 
freedom since liquid levels have no steady-
state effect (but this has already been taken 
into account in the degree of freedom 
analysis). 

•  Stabilize other unstable modes, for example, 
for an exothermic reactor (these are also 
usually quite obvious).   This involves 
controlling extra local measurements, but 
does not consume any degrees of freedom, 
since the setpoints for the controlled variables 
replace the manipulated inputs (valve 
positions) as degrees of freedom. 

•  Control variables which would otherwise 
“drift away” due to large disturbance 
sensitivity (these are sometimes less 
obvious). This involves controlling extra 
local measurements, e.g. a tray temperature in 
a distillation column, and also does not 
consume any degrees of freedom. 

 
Self-optimizing control (step 3) 
 
The basic idea of self-optimizing control was 
formulated about twenty years ago by Morari et al. 
(1980) who write that “we want to find a function c 
of the process variables which when held constant, 
leads automatically to the optimal adjustments of 
the manipulated variables.” To quantify this more 
precisely, we define the (economic) loss L as the 
difference between the actual value of the cost 
function and the truly optimal value, i.e. L = J (u; d) 
- Jopt (d) where u = f(c,d).  



 
Self-optimizing control (Skogestad, 2000) is 
achieved if a constant setpoint policy results in an 
acceptable loss L (without the need to reoptimize 
when disturbances occur).  
 
The main issue here is not to find the optimal 
setpoints, but rather to find the right variables to 
keep constant. The idea of self-optimizing control 
is illustrated in Figure 3. We see that a loss results 
when we keep a constant setpoint rather than 
reoptimizing when a disturbance occurs.  

 
An additional concern with the constant setpoint 
strategy is that there is always a difference between 
the setpoint cs and the actual value c due to 
implementation errors caused by measurement 
errors and imperfect control. To minimize the effect 
of the implementation errors, the cost surface as a 
function of c should be as flat as possible, see 
Figure 4.  
 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Loss L = J – Jopt (d) imposed by constant setpoint policy: There is a loss if we keep a constant setpoint 
rather than reoptimizing when a disturbance occurs. For the case in the figure it is better (with a smaller loss) to 

keep the setpoint c1s constant than to keep c2s constant. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Implementing the controlled variable: Effect of implementation error on cost 
 



Example sharp optimum. An example of a sharp 
optimum (Figure 4c) is for high-purity distillation 
where the controlled variable c is the temperature in 
the end of the column. In this case even a small 
change in temperature at the end of the column will 
imply a large relative change in composition, and 
thus a large change in cost J for the process. 
 
To select controlled variables for self-optimizing 
control, one may use the stepwise procedure of 
Skogestad (2000): 
 

Step 3.1 Definition of optimal operation 
(cost and constraints) 

Step 3.2 Determine degrees of freedom for 
optimization 

Step 3.3 Identification of important 
disturbances 

Step 3.4 Optimization (nominally and with 
disturbances) 

Step 3.5 Identification of candidate 
controlled variables 

Step 3.6 Evaluation of loss for alternative 
combinations of controlled variables (loss 
imposed by keeping constant setpoints 
when there are disturbances or 
implementation errors) 
Step 3.7 Evaluation and selection 

(including controllability analysis) 
 
Note that except for Step 3.7, this procedure 
normally requires steady-state information only. 
The procedure has been applied to several 
applications, including distillation column control 
(Skogestad, 2000), the Tennessee-Eastman process 
(Larsson et al., 2001) and the reactor-recycle 
process (Larsson et al., 2003). 
 
To identify good candidate controlled variables, c, 
one should look for variables that satisfy all of the 
following requirements (Skogestad, 2000): 
 
1. The optimal value of c should be insensitive to 

disturbances 
2. c should be easy to measure and control (so 

that the implementation error is acceptable) 
3. The value of c should be sensitive to changes 

in the manipulated variables (the steady-state 
degrees of freedom). Equivalently, the 
optimum (J as a function of c) should be flat. 

4. For cases with more than one unconstrained 
degrees of freedom, the selected controlled 
variables should be independent. 

 
At least “locally” (for small disturbances), these 
requirements may be combined into a single rule 
(which generalizes requirement 3): Look for 
variables that maximize the minimum singular 
value of the appropriately scaled steady-state gain 
matrix G from u to c (Skogestad and Postlethwaite, 
1996) (Skogestad, 2000). Here u denotes the 
steady-state degrees of freedom. 
  
If a linearized model is available, then the 
minimum singular value rule may very useful for 
eliminating poor candidate variables, but it is a 
local analysis, and for a final selection one should 
use the above procedure with evaluation of the loss 
for larger disturbances. 
  
It is stressed that the issue of selecting appropriate 
controlled variables c for the unconstrained degrees 
of freedom is equally important when we use 
multivariable constrained control (MPC) in the 
supervisory control layer. The setpoints for the 
selected controlled variables as well as the active 
constraints, which may vary with time, are then 
computed by the steady-state optimization layer 
and supplied to MPC for implementation. 
 

 
 

6.  Production rate and inventory control (step 
4) 

 
In chemical plant mass moves through the process, 
starting up as feeds and ending up as products. The 
production rate is commonly assumed to be set at 
the inlet to the plant, with outflows used for level 
control. One important reason for this is probably 
that most of the control structure decisions are done 
at the design stage (before the plant is built) where 
we usually fix the feedrate. However, during 
operation the feedrate is usually a degree of 
freedom, and very often the economic conditions 
are such that it is optimal to maximize production. 
We then have the following rule: 
 

Identify the main bottleneck in the plant by 
optimizing the operation with the feedrate 
as a degree of freedom (steady state, see 
step 3). Set the production rate at this 
location. 

 



The justification for this rule is that the economic 
benefits of increasing the production are usually 
very large (when the market conditions are such), 
so that it is important to maximize flow at the 
bottleneck. On the other hand, if market conditions 
are such that we are operating with a given feed 
rate or given product rate, then the economic loss 
imposed by using a outer cascade loop to adjust the 
production rate at the bottleneck  is usually zero, as 
deviations from the desired feed or production rate 
can be averaged out over time, provided we have 
storage tanks for feeds or products 
 
 
7.  Regulatory layer (step 5) 

 
In this paper we use the terms “lower layer”, “inner 
loops” and “secondary loops” as synonyms for the 
regulatory control layer. The “primary” control 
system is the same as the supervisory control 
system.  
 
The regulatory control layer should usually be of 
“low complexity”. Usually it consists of single-
input-single-output (SISO) PI control loops. The 
main objective is to “stabilize” the plant. We have 
here put stabilize in quotes because we use the 
word in an extended meaning, and include both 
modes which are mathematically unstable as well 
as slow modes (“drift”) that need to be “stabilized” 
from an operator point of view. The controlled 
variables for stabilization are measured output 
variables y2, and their setpoints y2s may be used as 
degrees of freedom by the layers above.  
 
More generally, the objective of the regulatory 
control layer is to locally control secondary 
measurements (y2), so that the effect of 
disturbances on the primary outputs (y1=c) can be 
handled by the layer above (or the operators). In the 
regulatory control layer we generally avoid using 
manipulated variables that may saturate, because 
otherwise control is lost and reconfiguration of 
loops is required. 
 
The main structural issue in the regulatory layer is 
to determine which extra (secondary) variables y2 
to control in order to stabilize the process and 
achieve local disturbance rejection (see Figure 5).  
A good secondary controlled variable 
(measurement) usually has the following properties: 
 

y1 = c 

y2 = ? 

 
 

 
Figure 5. Selection of secondary controlled 

variables y2 

 
 
•  The variable is easy to measure 
•  The variable is easy to control using one of the 

available manipulated variables (the 
manipulated variable should have a “direct”, 
fast and strong effect on it) 

•  For stabilization: The unstable mode should be 
detected “quickly” by the measurement 
(compute. for example, the  pole vectors for a 
more detailed analysis) 

•  For local disturbance rejection: The variable is 
located “close” downstream of an important 
disturbance (use, for example, a partial control 
analysis for a more detailed analysis). 

 
 
We have here distinguished between stabilization 
and local disturbance rejection, but in practice the 
may be combined into the requirement of avoiding 
that the states x (or more generally, the weighted 
states Wx) drift too far away from their desired 
(nominal) value. The advantages of considering a 
measure of all the states in the system is that the 
regulatory control system is then not tied to closely 
to a particular primary control objective which may 
change with time. Also, keeping all the states 
bounded is important to avoid that nonlinear effects 
give a problem. The sensitivity of the system state 
to disturbances with the regulatory control loops 
closed may be analyzed using partial control, as 
discussed later. 
 



The “unstable’’ modes are very often related to 
inventory in each unit. This includes both the 
overall inventory (total mass) as well as the 
inventory of individual components.  
 
•  For liquid phase systems, overall inventory in 

each unit is stabilized by controlling liquid 
level.  

•  For gas phase systems, overall inventory 
(pressure) is controlled in selected units, but in 
many units it is left uncontrolled (floating), for 
example, to minimize pressure drop. 

•  For both gas and liquid phase systems, the 
inventory of individual components may need 
to be stabilized. Usually, this involves 
controlling a composition, or a derived 
property such as temperature. For example, in 
a distillation column, a temperature controller 
is often used to stabilize its otherwise drifting 
composition profile. Note that we do not need 
to control the inventory of all components, as 
there may be only one unstable mode 
associated with the “drift” of many 
components. Also, control of a single 
measurement may stabilize several unstable 
modes. 

 
As already discussed, the design of the regulatory 
layer (or more precisely, the assignment of control 
loops in the regulatory control layer) usually starts 
by determining where to set the production rate 
(step 4), and then assigning the stabilizing liquid 
level loops. For the other unstable modes a pole 
vector analysis (Havre and Skogestad, 1997) may 
be useful. It requires a linearized model, and to 
minimize the required input usage, the rule is to 
select for stabilizing control measured variables and 
manipulated inputs corresponding to large elements 
in the pole vectors. 
 
Except for cases where we do final control in the 
regulatory control layer, no degrees of freedom are 
lost as the setpoints y2s for the locally controlled 
variables remain degrees of freedom for the layer 
above. This assumes that also the setpoints for the 
liquid levels remain as degrees of freedom. 
 
 
Partial control 
 
To analyze this in more detail the concept of  
partial control  is very useful, and the objective is 
to minimize the magnitude of the partial control 

gain, Pd1 (see below), which gives the effect of the 
disturbances on the weighted states (x) with the 
secondary (regulatory) loops closed. The results in 
this section are based on Skogestad and 
Postlethwaite (1996) and Havre and Skogestad 
(1996), but they considered the effect on the 
primary outputs (y1=c), whereas we here have a 
more general view, where y1=W x denotes the 
weighted states.. In the case where we are 
concerned with keeping the plant close to its 
steady-state, the weight matrix W is a diagonal 
matrix consisting of the inverse of the allowed 
variation in its state along the diagonal. However, 
in general W can be a full non-square matrix. 
 
Let the overall process model be y = G u + Gd d. 
We partition the manipulated inputs u and the 
measured outputs y into two sets, 
 
y = [y1  y2],    u=[u1  u2]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Partial control of the secondary variables 

y2 
 
 
 
where y1 = Wx denotes the weighted states, y2 the 
(secondary) measurements, u the inputs (m), u2 the 
inputs used in the secondary layer, and u1 denotes 
the unused inputs (this is not very important). The 
plant model G is partitioned correspondingly,  
 
y1 = G11 u1 + G12 u2 + Gd1 d 
y2 = G21 u1 + G22 u2 + Gd2 d 
 
By closing the lower-layer (inner) loops involving 
u2 and y2,  
 
u2 = K2 (y2s – y2 – n2),  



 
we obtain, as seen from the (supervisory) layer 
above, a partially controlled system with y2s (the 
setpoints for the locally controlled variables y2) and 
u1 (the unused input) as degrees of freedom. The 
transfer function for the partially controlled system 
is 
 
y1 = P1 u1 + Pr1 (y2s-n2) + Pd1 d 
  
where P1 = G11 – G12 K2 (I + G22 K2)-1 G21,   

Pd1 = Gd1 – G12 K2 (I + G22 K2)-1 Gd2, 
Pr1 = G12 K2 (I + G22 K2)-1.  

 
The lower layer is assumed to be much faster than 
the upper layer, so for a preliminary analysis when 
selecting secondary controlled variables y2 we may 
assume that y2 is perfectly controlled (let K2 → ∞, 
or equivalently set y2 = y2s – n2) and we get 
 

P1 = G11 – G12 G22
-1 G21,   

Pd1 = Gd1 – G12 G22
-1 Gd2, 

Pr1 = G12 G22
-1 

 
We should then (note that y1=Wx here denotes the 
weighted states):  
 

•  Select to control secondary variables y2 
such that the norm of Pd1 = Gd1 – G12 G22

-1 
Gd2 is sufficiently small (especially at 
intermediate and high frequencies beyond 
the bandwidth of the primary control 
system, but also the steady state should be 
considered).  If this is satisfied then we say 
that the plant is “stabilized’’ (in the 
extended sense defined earlier).  

 
It is recommended to plot the magnitude of the 
elements in Pd1 as a function of frequency, and if 
the variables y1 (= W x) and d are appropriately 
scaled then “small” means less than 1 (Skogestad 
and Postlethwaite, 1996).  
 
If we have found a lower-layer control structures 
which “stabilizes” the plant, then we should as the 
next step check that it is consistent with the selected 
set of controlled variables. This may be done by 
recalculating the partial gains, but now with y1 = c. 
We then have:  

•  If we want to use the reference r2 as a 
degree of freedom to control the primary 
outputs y1=c, then Pr1 = G12 G22

-1 should 

be (sufficiently) large (also at steady-
state).   

•  If r2 is not a degree of freedom in the 
primary control layer, then it may be 
viewed as a disturbance and Pr1 = G12 G22

-1  
should be small so that it can be handled 
by the supervisory control system.  

•  If we want to use the unused inputs u1 as a 
degree of freedom to control the primary 
outputs y1, then P1 = G11 – G12 G22

-1 G21 
should be (sufficiently) large (also at 
steady-state). 

 
The use of partial gains with K2 → ∞ is useful for 
finding which variables to control in regulatory 
control layer.  However, for a more detailed 
analysis it may be useful to design a controller K2. 
In the simplest case K2 may be assumed static. 
Also, it is often desirable to find a simple (low-
complexity) way of implementing the controller K2. 
For this it is useful to define some measure of 
complexity as discussed next.  
 
Complexity 
 
It is generally desirable that the complexity of the 
control system, and in particular of the regulatory 
control layer should be as small as possible (e.g., 
Nett, 1989). To quantify this it may be useful to 
introduce a structural complexity number Πs. This 
may be defined in many ways, and one possibility 
is the following:  
 
 Πs = #measurements + #manipulators + 
#blocks  + #control-parameters  
 
 
8.  Supervisory control (step 6) 

 
The purpose of the supervisor control layer is to 
keep the (primary) controlled outputs c at their 
optimal setpoints cs, using as degrees of freedom 
the setpoints y2s in the  regulatory layer and any 
unused manipulated inputs. Which variables to 
control and their setpoints are determined by the 
optimization layer above. Note that the variables to 
control may change if the active constraints change.  
 
For the supervisory control layer, the first structural 
issue is deciding on whether to use decentralized or 
multivariable control. Note that there is usually 
some decentralization, that is, there is often a 



combination of several multivariable and single-
loop controllers. 
 
Decentralized single-loop control is the simplest. It 
is preferred for noninteracting process and cases 
where active constraints remain constant. 
Advantages with decentralized control: 
 
+ Tuning may be done on-line 
+ No or minimal model requirements 
+ Easy to fix and change 
 
Disadvantages: 
 
- Need to determine pairing 
- Performance loss compared to multivariable 

control 
-         Complicated logic required for 
reconfiguration when active constraints move 
 
The decision on how to pair inputs (y2s, u1 ) and 
outputs (c), and this is often done based on process 
insight. In more difficult cases a RGA-analysis may 
be useful, and the rule is pair such that the resulting 
transfer matrix is close to identity matrix at the 
crossover expected frequency, provided the element 
is not negative at steady state. For a more detailed 
analysis one should also consider disturbances, and 
compute the closed-loop disturbance gain (CLDG) 
(Skogestad and Postlethwaite, 1996). One 
disadvantage with decentralized control is that it 
may require reconfiguration of loops (with 
complicated logic) if the active constraints change  
 
Multivariable control is preferred for interacting 
processes and for processes with changes in active 
constraint. For the cases where the constraints may 
change, one needs a multivariable controller with 
explicit constraint handling (e.g., MPC). This 
avoids the need for logic, and gives a smooth 
transition between active constraints. Advantages 
with multivariable constrained control (MPC):  
 
+ Coordinated control for interactive processes 
+ Easy handling of feedforward control 
+ Easy handling of changing constraints with 

no logic required and smooth transition 
between active constraints 

 
Disadvantages: 
- Requires multivariable dynamic model 
- Tuning may be difficult  

- Generally more sensitive to uncertainty and 
changes in plant operation 

- May be less transparent  
- May have a reliability problem: “Everything 

goes down at the same time” 
 
The optimization in step 2 with various 
disturbances may be used to set up a table of 
possible combinations of active constraints, and 
multivariable constrained control (MPC) should be 
used if  a structure with single-loop controllers will 
require excessive  reconfiguration of loops.    
 
 
9. Optimization (step 7) 

 
The purpose of the optimization is to identify the 
active constraints and recompute optimal setpoints 
cs for controlled variables.  
 
In addition to deciding on which unconstrained 
variables to control (see step 3), the main structural 
issue is to decide if it is necessary to use real-time 
optimization (RTO), or if manual optimization is 
sufficient. With RTO new setpoints are typically 
computed about every hour or so, after the steady-
state model has been adjusted to match the current 
conditions. Real-time optimization (RTO) is costly 
in the sense that it requires a detailed steady-state 
computer model to be maintained and continuously 
updated. If the active constraints do not change, and 
we are able to find good self-optimizing controlled 
variables, then RTO gives little benefit and should 
not be used. There are also situations where the 
active constraints do change, but where the 
operators may be able to identify and implement 
the required changes.     
 
 
10. Validation (step 8) 

 
After having determined a plantwide control 
structure, it may be necessary to validate the 
structure, for example, using nonlinear dynamic 
simulation of critical parts. 

 
11.  Discussion. Bottom-up design (steps 5-7): 
Any loss in control performance? 

 
We have here assumed that the control system is 
designed bottom-up starting with the lower 
regulatory control layer, involving the inputs u2 

-



(denoted m earlier) and the outputs y2. Does this 
hierarchical decomposition into control layers 
impose any loss on the overall achievable control 
performance in terms of the primary outputs y1 

(denoted c earlier)? 
 
The answer is “no” provided we have full access to 
the lower (secondary; regulatory) layer from the 
upper (primary; supervisory) control layer: 
  
Theorem (Larsson and Skogestad, 1998). The 
closing of a lower-layer (partial) control system, 
involving the manipulated input u2 and the 
measured and controlled variable y2, introduces no 
new control limitations  (e.g., in terms of RHP-
zeros) provided  

1. The setpoints y2s (for y2) are available 
as degrees of freedom at the next 
layer. 

2. The measurements y2 are available at 
the next layer 

3. The controller interconnecting y2 and 
u2 is minimum phase and stable (but  
may have integrators). 

 
The proof is trivial because under these conditions 
we can just  invert away the controller K2 used in 
the lower layer. Although the theorem is trivial, it 
has some important practical significance in terms 
of multivariable control (MPC). It tells us that the 
presence of the lower-layer control system imposes 
no limitations on the overall control performance, 
provided we at the next layer use a multivariable 
controller with full access to  the measurements (y2) 
and setpoints (r2) used in the lower layer. 
 
However, in many practical cases, we want to use a 
simpler control system, and we may impose 
limitations by (A) improper pairing, or (B) use of 
inner cascade loops that actually amplify 
disturbances. 
 
A. Improper pairing. Assume that we do not have 
access to r2 when controlling y1. For example, this 
is the situation if we do “final control” in the lower 
layer, i.e. y2 is actually a “primary” output. 
(Alternatively, this is the situation if we use 
decentralization within the supervisory control 
layer, and design the single-loop controllers 
sequentially). 
 

In this case pairing on a negative steady-state RGA-
element will impose a fundamental limitation in 
terms of the control of y1. More precisely, if  
 

(i) the pairing between u2 and y2 
corresponds a negative steady-state 
RGA-element (in the RGA of G),  

(ii) G22 has no RHP-zero, and  
(iii) we use integral control in K2,   

 
then closing the inner loop involving u2 and y2 will 
introduce a RHP-zero in the resulting transfer 
function P11 from u1 to y1 (Shinskey 1979, Bristol 
1966, Grosdidier and Morari, 1985, Jacobsen, 
1999). The effect of the RHP-zero is less severe 
(moved to higher frequencies) as we tighten the 
control in the inner loop (Jacobsen, 1999, Larsson, 
thesis 2000). 
 
Note: There are also other reasons for avoiding 
pairing on negative steady-state RGA-elements, 
including ensuring failure tolerance and allowing 
for independent tuning (DIC).  
 
B. Improper cascade control. Assume that the 
outputs y2 are “secondary” outputs (extra 
measurements) which we choose to control in order 
to stabilize the plant or improve local disturbance 
rejection.  This is a standard cascade control 
system. In this case the set u1 is empty, and the 
layer above uses the setpoints r2 in order to control 
the “primary” outputs y1. 
 
In this case, the main purpose of the lower-layer 
control system is to improve the control of y1, but if 
improperly designed, it may make the situation 
worse. For example, if we had a case where 
originally the disturbance had no effect on the 
output (Gd1 = 0), then the closing of a lower-layer 
loop may introduce sensitivity to the disturbance 
(with Pd1 = Gd1 – G12 K2 (I + G22 K2)-1 Gd2 nonzero). 
 
 
  
12. Case studies 
 
The design procedure described in this paper has 
been applied to numerous case studies, several of 
which are found in the thesis by Larsson (2000). 
 
•  Larsson et al. (2003) and Govatsmark and 

Skogestad (2002): Selection of controlled 
variables for reactor, separator and recycle 



process (Steps 1, 2 and 4 plus some on Steps 5 
and 6) 

•  Larsson and Skogestad (1999) and Engelien et 
al. (2003): Optimization and selection of 
controlled variables for heat-integrated 
distillation columns (Steps 1, 3 and 4) 

•  Larsson et al. (2001): Selection of controlled 
variables for the Tennessee-Eastman process 
with focus on how to eliminate poor candidate 
variables (Steps 1 and 3). (The control system 
design in this paper was included to show that 
the proposed controlled variables are workable, 
but otherwise do not follow the steps in Table 
1. For example, there is no thorough analysis 
on where to locate the throughput manipulator 
(step 4)).  

 
Skogestad (2000): Optimization (moving active 
constraints as a function of feedrate) and selection 
of controlled variables for a propane-propylene 
distillation column (Steps 1, 3 and 4).   
 

13. Conclusion 

The proposed plantwide control design procedure 
in Table 1 has two main parts: 

 
I. Top-down analysis to identify degrees of 

freedom and primary controlled variables 
(look for self-optimizing variables). 

II. Bottom-up analysis to determine secondary 
controlled variables and structure of control system 
(pairing). 
 
There are many outstanding research issues related 
to filling in more detailed procedures in Table 1 on 
what to do in each step of the procedure. In 
particular this applies to the bottom-up part of the 
procedure. For example, more work is needed in 
order to understand how to decompose and 
coordinate the layers of the control system. 
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