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Abstract 
 

Quantitative Feedback Theory (QFT) is one of 
most effective methods of robust controller design and 
can be considered as a suitable method for systems with 
parametric uncertainties. Particularly it allows us to 
obtain controllers less conservative than other methods 
like H∞ and µ-synthesis. In QFT method, we transform all 
the uncertainties and desired specifications to some 
boundaries in Nichols chart and then we have to find the 
nominal loop transfer function such that satisfies the 
boundaries and has the minimum high frequency gain. 
The major drawback of the QFT method is that there is 
no effective and useful method for finding this nominal 
loop transfer function. The usual approach to this 
problem involves loop-shaping in the Nichols chart by 
manipulating poles and zeros of the nominal loop transfer 
function. This process now aided by recently developed 
computer aided design tools proceeds by trial and error 
and its success often depends heavily on the experience 
of the loop-shaper. Thus for the novice and First time 
QFT user, there is a genuine need for an automatic loop-
shaping tool to generate a first-cut solution. In this paper, 
we approach the automatic QFT loop-shaping problem 
by using a procedure involving Linear Programming 
(LP) techniques and Genetic Algorithm (GA). 
 
 
 

1. Introduction 
 

The Quantitative Feedback Theory (QFT) 
method offers a direct, frequency-domain based design 
approach for tackling feedback control problems with 
robust performance objectives.  In this approach, the 
plant dynamics may be described by frequency response 
data, or by a transfer function with mixed (parametric 
and non-parametric) uncertainty models. One feature that 
distinguishes QFT from other frequency-domain 
methods, such as H∞ and LQG/LTR, is its ability to deal 
directly with uncertainty models and robust performance 
criteria. This is achieved by translating robust 
performance specifications and uncertainty models into 
so-called QFT bounds. These bounds, typically displayed 
on a Nichols chart-like plot, then serve as a guide for 
shaping the nominal loop transfer function which 
involves the manipulation of gain, poles and zeros. This 
design process is executed efficiently using computer 
aided design softwares, such as the QFT Control Design 
MATLAB Toolbox [1], and is effective for “simple” 
problems. Nevertheless, QFT designers are often 
challenged by such control problem; due to lack of loop-
shaping experience, and could benefit from an algorithm 
that automatically provides a first-cut solution to the 
loop-shaping problem. In addition, an automatic loop-
shaping facility would enhance the capabilities of the 
expert QFT designer. Automatic loop-shaping algorithms 
have been proposed over the past twenty years and this 
paper reports on a new version.  
 In this paper we provide an automatic loop-
shaping algorithm that builds upon the previous works. 
We pose the loop-shaping problem as a linear program, 
and then we optimize the numerator parameters of 



controller. In contrast to Bryant and Halikias [2], the 
QFT bounds are tightly described by linear inequalities. 
This is achieved by first posing the QFT problem in 
terms of the closed-loop complementary sensitivity 
function T0 rather than the nominal loop transfer function 
L0 as done in the classical QFT approach. Then, since 
these (closed-loop) QFT bounds are not generally 
convex, we transform the problem so that they can be 
exactly described by linear inequalities. These convex 
QFT bounds arc then evaluated at a finite set of 
frequencies to form a set or linear inequalities 
constraining T. Then a linear program is solved where the 
cost measures high-frequency controller gain and where 
the linear constraints (non-conservatively) represent the 
closed-loop QFT bounds. 
 After optimizing controller numerator, we use 
genetic algorithm to optimize the denominators of 
controller. In this step numerator is considered fixed and 
GA is used just for optimizing the denominator 
parameters. 

In fact, this paper reconciles the method 
explained in [3] which just makes use of LP and the 
method explained in [4] which just makes use of random 
optimization techniques. 

 
2. The QFT Design Technique 

 
The general QFT problem is how to design 

controller C(s) and pre-filter F(s) such that for a given set 
of uncertain plants { }PP∈  with perturbed parameters 

Ω∈α  the following specifications are satisfied: 
 (i) Robust Stability: 
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must be exponentially stable Ω∈∀α .  
 
(ii) Robust tracking performance: Two time functions 
a(t) and b(t), are given and a command input r(t) (for 
example a step function) that specify the output tolerance 
of y(t) in the form:  
 

)()()( tbtyta ≤≤      { }PP∈∀                  (1) 
 

These tracking specifications in the time domain can be 
translated into the frequency domain upper and lower 
bounds for )( ωjTR  that satisfies: 
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(iii) Disturbance rejection specification:  A function 
D(ω) is given that specifies the output specifications of 
Td(jω), in then form:  

 
       )()( ωω DjTd ≤        { }PP∈∀                     (3) 
 
where  
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and d(s) is the output disturbance function. 
 

In the classical QFT design, the above 
specifications transforms into boundaries for some pre-
specified frequencies in Nichols chart and we have to 
derive an open-loop transfer function 

)().,()( 000 sCsPsL α= such that L0 lie above the 

boundaries in all frequencies (note that ),( 00 sP α  is the 
nominal plant). In this paper we will introduce a method 
for automating this process. The pre-filter F(s) can then 
be calculated easily.  
 
3. Automatic Loop-Shaping 
 
In this paper we provide an automatic loop-shaping 
algorithm that includes two steps. In both steps we 
transform the open loop boundaries into close loop 
boundaries in complex plane and we find a nominal 
closed loop transfer function instead of nominal open 
loop transfer function. In fact these two formulations are 
the same and there is no inherent difference between 
them, But It will be shown that this new formulation will 
able us to transform the problem into a linear problem 
setup. In the first step (which is just like the method 
introduced in [3]) we pose the loop-shaping problem as a 
LP problem which yields a stabilizing controller of 
prescribed order and minimal high-frequency gain, 
although in this step we just optimize the numerator of 
closed loop transfer function and its denominator must be 
a priori defined. This formulation is achieved by first 
posing the QFT problem in terms of the complementary 
sensitivity function T rather than the nominal loop 
transfer function as done in the classical QFT approach. 
These new bounds might not be convex, in these cases 
we have to use their convex hulls. These convex QFT 
bounds are then approximated with a polyhedral to form 
a set of linear inequalities constraining T. Next, Closed-
loop stability is imposed by fixing the poles of T (to be 
stable). Finally, a linear program is solved where the 
linear constraints (non-conservatively)   represent the 
closed-loop QFT bounds. 

A key limitation of the above procedure is that 
the poles of T are fixed with only the zeros taken as 
optimization variables. So in the second step, we 
optimize the denominator coefficients where the cost 
function is the quadratic sum of Euclidean distance 



between the open-loop response and the bounds in the 
Nichols plane. This minimization tries to reach the 
optimal loop-shaping defined by I.M. Horowitz and M. 
Sidi [5, 6]. Now we describe these two steps in more 
detail: 
STEP 1: 

1. Convert the open-loop bounds into closed-
loop bounds. 

2. Check for convexity, if not: compute the 
convex hull. 

3. Compute a set of linear inequalities for each 
bound. 

4. Define the poles of T(s). 
5. Compute the matrices A and B for the 

linear inequalities Ax<B from steps 3 and 4 
and this equality: 
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Note that T(s) is linear in its residuals (α, β, 
γ) and is not linear in its denominator 
coefficients (or poles). 
 

6. Solve the linear program to find the 
appropriate values for α, β, γ. If there is no 
solution allow user to either select a new set 
of poles or increase order of complementary 
sensitivity function T. 

  
7. If the problem is solved, extract the 

controller from: 
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STEP 2: The first step can only determine optimal zeros 
with denominator which is a priori defined. The second 
step is implemented to optimize the closed-loop poles.  
I.M. Horowitz and M. Sidi [5, 6] demonstrated that if an 
optimal controller exist, it is unique and the associated 
open-loop or closed-loop lies on the boundary of each 
trial frequency w1,…,wt. To take into account this 
property, we consider a cost function based on the 
quadratic sum of Euclidean distance between the open-
loop and QFT bound in the Nichols plane at each 
frequency: 
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This function depends a priori on the numerator and 
denominator coefficients of T, but the first step of 
optimization has determined the numerator coefficients 
so we would just optimize the denominator coefficients. 

 It must be noted that second step don’t eliminate 
the results taken in first step. For understanding this 
point, note that the closed loop transfer function is 
generally considered as follows which is in fact another 
formulation of (4): 
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By applying some ordinary mathematics we can 
conclude that the high-frequency gain is equal to the am , 
so in the second step when we consider the numerator of 
T(s) fixed, the high-frequency gain won’t change and just 
the distance between T(jω) in each trial frequency and its 
related bounds will decrease.  
 
4. Results 
 

We show the effects of using this method on a 
benchmark problem of QFT theory. The problem is 
designing a controller for a DC motor whose uncertain 
transfer function is: 
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in which 150 ≤ K ≤ 300 and 0.012 ≤ τm ≤ 0.020 and τe = 
0.001s. 
The closed-loop objectives are: 
 
- Robust stability specifications: 
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- Tracking Specifications: 
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with: 
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- Input disturbance rejection specifications: 
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- Output disturbance rejection specifications: 
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And in the first step, we imposed the fixed denominator 
as follows: 
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 The optimization only composed by the first 
step leads to results shown in figures 1 to 4 in terms of 
frequency and transient response. Tracking and output 
disturbance rejection specifications are satisfied but the 
input disturbance rejection specification is not satisfied. 
 The two step optimization allows us to obtain a 
controller satisfying all specifications as shown in figures 
5 to 8. It is completely obvious that the input disturbance 
rejection specification is also satisfied. 
 
5. Conclusions: 
 
 This paper proposes an automatic QFT 
controller design with a two step optimization algorithm 
following the optimal controller defined by I.M. 
Horowitz. The first step is a convex closed-loop 
numerator optimization and the second one is a convex 
closed-loop denominator optimization. This method is 
tested on some benchmark problems and has given good 
results. 
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