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Abstract: A theoretical framework that is based on a generalization of state space systems 
is proposed. The resulting transfer function connection matrix model describes both 
subsystem interconnections and dynamics in an integrated mathematical formulation, yet 
ensures that the dynamic and the connection aspects of the system are separated into two 
sets of equations that are relatively independent. The set of connection equations are of 
especial interest when dealing with large scale systems as it allows analysis of system 
connections without direct reference to its dynamics and without requiring parallel 
mathematical objects to deal with such interconnections. Copyright © 2003 IFAC 
 

Keywords: Control systems, Control theory, Decoupling problems, Distributed models, 
Interconnection, Large-scale systems, Mathematical systems theory, Subsystems, 
Systems design, Transfer function matrices. 

 
 
 
 

1. INTRODUCTION 
 
Control engineering theory often focuses on the 
dynamic (or transient) behaviour of systems, 
particularly of controlled closed loop systems. In 
large industrial installations, the interconnections that 
exist between sub-processes of a plant have a direct 
impact on the dynamics of the overall controlled 
system. These connections define the system structure 
(Maciejowski, 1989) and are particularly significant 
in large scale systems where complex multivariable 
problems can result from inappropriate linking of unit 
processes. 
 
The theory of large scale systems, and distributed 
control, deals with the effects that subsystem 
interconnections have on the dynamics of the 
resulting systems. With the proliferation of networked 
computer-based controllers in industry, the size of 
such interconnected systems has increased 
significantly in recent years and the need for 
understanding system connections, independently of 
subsystem dynamics, has become more important. 
 
System structure (i.e. the system configuration that is 
defined by linkages between its subsystems) has often 
been dealt with explicitly by defining and analysing 

various derived mathematical entities that stand in a 
one-to-one relationship with the original dynamic 
system. These parallel, equivalent theoretical objects 
include flow graphs (Wilson and Beineke, 1979) that 
yield results such as Masons Rule, digraphs in which 
the matrices of the state space system are replaced by 
Boolean equivalents (Bahar and Jantzen, 1995), 
interconnection (or adjacency) matrices for [ABC] 
state space model formulations with digraph 
interpretations (Siljak, 1991), and structured matrices 
that specify particular matrix shapes (Siljak, 1991). 
 
A literature search shows that state space models (e.g. 
Groumpos and Pagalos, 1998; Guan et al., 2002; Guo, 
et al., 2000; Siljak, 1996) are more widely used than 
transfer function models (e.g. Hovd et al., 1997; 
Michel, 1983; Van Antwerp et al., 2001). The trend 
in algebraic techniques (as opposed to those based on 
graph theory) is also to use equations in which the 
dynamics and connections are closely intertwined – 
Compare Siljak (1996) and Callier et al. (1978). 
 
This paper proposes a transfer function connection 
matrix (TFCM) model by generalizing the state space 
model. The properties of this new model form are 
investigated and its use in the analysis of connected 
systems is illustrated.  Finally the connection equation 



 

     

    
 
Fig. 1. Block diagram of the state space model. 
 
of the model is applied to an industrial rod milling 
circuit to demonstrate its use in engineering. 
 
 

2. THE PROPOSED MODEL 
 
Consider the block diagram in Fig.1 for the linear, 
time-invariant, continuous state space model: 
 

(t)(t)(t)
(t)(t)(t)

DuCxy
BuAxx

+=
+=&

 (1) 

 
where x are the system states, u the inputs and y the 
outputs. Matrices A, B, C and D contain the system 
parameters. (The Laplace variable is “s”). 
 
In a state feedback control scheme the system states 
are connected to its inputs through a constant control 
law, defined by matrix K , to give: 
 

(s)(s)(s) rKxu +−=  (2) 
 
where (s)r  is the input to the controlled system. 
 
Note in particular that this connection changes the 
constant matrix A  of the state feedback description 
to matrix ][ BKA − , while leaving the dynamic block 
unaltered. This observation led to a generalization of 
the state space model in which its dynamic block is 
replaced by a transfer function matrix (TFM) model 
(Rosenbrock, 1974). The new block diagram becomes 
the proposed transfer function connection matrix 
(TFCM) system shown in Fig.2. 
 
The equations, in transfer function notation, for the 
generalized state space, or TFCM model, are: 
 

(s)(s)(s)
(s)(s)(s)

(s)(s)(s)

yuyz

vuvz

zv

uXzXy
uXzXv

vMz

+=
+−=

=
 (3) 

 
where z are the outputs from, and v the inputs to the 
dynamic  block  (s)M .  Four  connection  matrices X, 
 

 
 
Fig. 2. Block diagram of the proposed TFCM model. 

with constant elements, specify the interconnections 
between signals in the system. The subscripts denote 
the signals involved in each connection and allow a 
useful chain rule check on subsequent algebraic 
expressions. (The negative feedback sign convention 
is used, and subtracted signals are identified in the 
block diagram by shaded sectors of the comparators.) 
 
The three matrix equations given in Eq.3 define the 
proposed transfer function connection matrix model 
and clearly consist of two distinctly different sets of 
equations. The first equation describes the system 
dynamics, as a transfer function matrix model 

(s)zvM , while the second and third equations 
describe the interconnections that are made within, to, 
from and around the central dynamic block 
(respectively matrices vzX , vuX , yzX  and yuX ). 
 
The transfer function matrix, (s)zvM , is diagonal or 
block diagonal or full, depending on whether the 
detail required from the connection analysis is at the 
unit-process or the subsystem or the system level. 
 
The equivalent transfer function matrix model, (s)G , 
for the proposed TFCM model is computed from: 
 

yuvu
1

zvvzvvzvyz (s)](s)[ XXMXIMX ++ −     (4) 
 
and clearly includes a feedback loop around its 
dynamic block, (s)zvM . This loop might not exist in 
all subsystems, in which case the equivalent TFM 
model reduces to: 
 

yuvuzvyz (s)(s) XXMXG +=                     (5) 
 
In the simplest subsystems the TFCM model would 
take the form: 
 

vuzvyz (s)(s) XMXG =                         (6) 
 
and arises when both the connections within and 
around subsystems do not exist. In this form its shape 
is analogous to the singular value decomposition 
model used by Van Antwerp et al. (2001). 
 
 

3. STABILITY OF TFCM MODELS 
 
Stability of a TFCM model is determined from its 
characteristic function. This in turn is computed from 
the determinant of its return difference matrix at the 
output (Rosenbrock, 1974): 
 

(s)(s)(s) ovzzvzzc φφ XMI +±=            (7) 
 
where (s)cφ  and (s)oφ  are the characteristic 
functions of the closed loop and the open loop 
systems respectively. 
 
In the case of interconnected subsystems, the latter is 
the product of the characteristic functions for the 



 

     

individual subsystems. In the case of separable 
subsystems, the former is also the product of the 
closed loop characteristic functions of the individual 
subsystems. 
 
Thus stability of a TFCM model depends on both its 
dynamic block, (s)zvM , and its characteristic 
connection matrix, vzX , (that might be zero in some 
cases). This is analogous to state space models in 
which system poles are determined by matrix A  
alone. 
 
3.1 Decomposition of TFCM Models. 
 
When independent subsystems are interconnected, the 
dynamic transfer function matrix of the resulting 
TFCM model is always block diagonal, with one 
block per subsystem, and  some being SISO. In a 
large interconnected system that has been 
decomposed into two smaller subsystems, this means 
that the determinant in Eq.7 takes the form: 
 

2222221222

2111111111

zvvzzzzvvz

zvvzzvvzzz
(s)(s)

(s)(s)
XMIXM

XMXMI
+

+
   (8) 

 
Thus a characteristic connection matrix that is block 
diagonal or block triangular indicates a system that 
can be decomposed into independent subsystems 
since the above determinant reduces to: 
 

222222111111 zvvzzzzvvzzz (s)(s) XMIXMI ++    (9) 
 
and the characteristic equation for the interconnected 
system becomes: 
 

(s)(s)(s)]
(s)
(s)

][
(s)
(s)

[(s) c2c1o
o2

c2

o1

c1
c φφφ

φ
φ

φ
φ

φ =±=   (10) 

 
where (s)ciφ  are the closed loop characteristic 
functions for its component subsystems. 
 
If, in addition, a diagonal block of the characteristic 
connection matrix is zero then that particular 
subsystem is in open loop. 
 
 

4. INTERCONNECTION OF TFCM MODELS 
 
Interconnection of subsystems involves the subsystem 
inputs, (s)u , and outputs, (s)y  as well as any new 
system inputs (or setpoints), (s)r . Thus the TFCM 
formulation of the problem effectively isolates the 
dynamic block from such interconnections and these 
can be defined by the connection equation: 
 

(s)(s)(s)(s) 1
uy

1
uu

1
ur yXuXrXu −−=          (11) 

 
This explicitly allows connections between subsystem 
inputs but (provided the inverse matrix exists) can be 
simplified to yield the subsystem connection matrix 
equation: 

 

[ ] [ ] (s)(s)(s) 1
uy

11
uuuu

1
ur

11
uuuu yXXIrXXIu

−−
+−+=  

(12) 
or 

(s)(s)(s) uyur yXrXu −=                 (13) 
 
By substitution into the TFCM model for the 
subsystems (Eq.3), the model for the interconnected 
system becomes: 
 

(s)(s)(s) zv vMz =                          . 

[ ]
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++

+=
              (14) 

 
The dynamics and connections remain separated, the 
dynamics of the TFCM model are invariant under 
connection changes and the connection equations 
only are altered. These are central features of TFCM 
models, particularly for the analysis of connections in 
large-scale systems. (Note: The matrix inversions in 
the connection matrix equations imply that the 
elements of connection matrices may start as binary 
but will in general consist of real rather than integral 
and binary elements.) 
 
4.1 The Characteristic Connection Matrix. 
 
Linear, time-invariant dynamic systems that result 
from the interconnection of independent subsystems 
can be described as a TFCM model. Its dynamic 
matrix, (s)zvM , will be block diagonal and invariant 
under connection changes. Its characteristic 
connection matrix, computed from Eq.14, will 
identify the effect that interconnections have on the 
dynamics of the system and, in particular, whether or 
not the system can be decomposed into component 
parts for analysis. The characteristic connection 
matrix also shows which subsystems remain in open 
loop and which become closed loop problems. 
 
Clearly the dynamic model can always be formulated 
as a diagonal matrix of transfer functions. 
 
 

5. ILLUSTRATIONS OF TFCM ANALYSIS 
 
Consider the two dynamic subsystems shown in Fig.3 
in which the subsystem transfer functions are: 
 

4s1
(s)g

3s

1 +
=

−e       and      
s1
2s1(s)g2 +

+=         (15) 

 
(One subsystem has significant dead-time so it is 
more amenable to analysis by frequency response 
methods based on transfer function models than by 
pole-zero methods based on state space models.) 



 

     

 
 
Fig. 3. Two dynamic subsystems. 
 
The TFCM model for the unconnected system is 
given by: 
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           (16) 

 
The corresponding TFM model, (s)G , is identical to 
the dynamic model, (s)zvM , of the TFCM model. 
 
These subsystems can be connected in many ways to 
form different structures for the overall system. These 
structures can result in systems that range from 
simple open loop SISO systems, as illustrated by 
Fig.4, through to fully interactive MIMO systems, as 
illustrated by Fig.7. It is only the connections that are 
altered, not the dynamics. Since TFCM models allow 
analysis of the connections independently of the 
dynamics these models can determine which dynamic 
models need to be obtained by costly system 
identification methods (Dougherty and Cooper, 
2003). 
 
 
5.1 A Simple SISO Structure. 
 
If the output from the first system is connected to the 
input of the second the interconnection equation 
(Eq.11) becomes: 
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
=    (17) 

 
The TFCM model for the connected system is 
computed from Eq.14 and becomes: 
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        (18) 

 
Inspection of its characteristic connection matrix 
indicates (a) that the system can be analysed by 
considering its component subsystems independently, 
(b) that both subsystems are in open loop and (c) that 
the first subsystem will disturb the second. 
 

 
 
Fig. 4. The first system structure. A simple SISO 

interconnection. 
 
The corresponding TFM model, (s)G , is computed 
from Eq.4 and, as expected, found to be: 
 

(s)
gg

g
(s)

12

1 ry 







=                     (19) 

 
 
5.2 A More Complex Structure. 
 
The block diagram for a more elaborate 
interconnection of the same subsystems is shown in 
Fig.5. The connection equation (Eq.11) for the system 
is found by inspection of the diagram to be: 
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or 
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The resulting TFCM model is computed from Eq.14 
and found to be: 
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Its characteristic connection matrix indicates (a) that 
the system can be analysed by considering its 
component subsystems independently, (b) that both 
subsystems are in closed loop and (c) the first 
subsystem will disturb the second. The (2,1) element 
of the characteristic connection matrix clearly 
illustrates that the final connection matrices are not 
binary, even though the initial ones were. 
 
The  TFM  model  for  the  interconnected  system  is  
 

 
 
Fig. 5. The second system structure. A more complex 

interconnection. 



 

     

 
 
Fig. 6. Closed loop step response for the second 

system structure. 
 
computed from Eq.4 and given by: 
 



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
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−
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This TFM model is verified through digital 
simulation of the original subsystems, connected as 
required by Fig.5. The results are shown in Fig.6. 
Both outputs respond to a unit step change in the first 
setpoint at time t=0. The final values are 0.5y1 =  and  

0.0y2 = . The second output alone responds to a step 
change in the second setpoint and its final value is 

0.5y2 = . These effects are expected from Eq.23. 
 
5.3 A Multivariable Structure. 
 
The block diagram for the interconnected systems is 
shown in Fig.7 and the connections are defined by 
Eq.11 to be: 
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or 
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The resulting TFCM model is: 
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The characteristic connection matrix is full so the 
systems in this structure cannot be decomposed into 
subsystems for stability analysis. The (2,2) element in 
the characteristic connection matrix is integral rather 
than binary. (The connection matrices in a TFCM 
model will often contain real number elements even 
though the original connection matrices are binary.) 

 
 
Fig. 7. The third system structure. A multivariable 

MIMO interconnection. 
 
 
5.4 Observation. 
 
Clearly it was the connections alone that were 
changed in the above examples and that resulted in 
the increasing complexity of the interconnected 
system structures. The TFCM model allows analysis 
of the connection matrices independently of the 
dynamic analysis. Thus it retains an important feature 
of methods like graph theoretic decomposition 
techniques (Callier et al., 1978) that have been used 
in the analysis of system connections. 
 
 

6. AN INDUSTRIAL APPLICATION 
 
The control of a milling circuit is a historically 
interesting application of MIMO control engineering 
techniques in the South African mineral extraction 
industry. For years the industry had been installing 
SISO control loops to hold PVs at SPs using 
appropriate CVs. It was only in the early 1970s that 
the deployment of an instrument to measure particle 
size created a situation in which the SISO problems 
were changed to MIMO by the single additional 
connection that the new instrumentation allowed. 
Unsuspecting researchers tackled the problem from 
various angles until a visit to South Africa by Prof 
Rosenbrock brought the INA method (Rosenbrock 
(1974) to their attention. When applied to the milling 
circuit its MIMO control problem was at last 
addressed satisfactorily (Hulbert 1983). 
 
The connection equations of the TFCM model 
predict, without reference to the system dynamics, 
that  the additional  system connection  from  the  new 
 

 
 
Fig. 8. Simplified Block Diagram of the Controlled 

Industrial Milling Circuit. 



 

     

PV, 3y , would result in a MIMO problem. The 
relevant connection matrix equation is: 
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The characteristic connection matrix for the milling 
circuit is readily computed from Eq.14 to be: 
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This vzX  matrix can be partitioned to the lower block 
triangular matrix: 
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The lower block diagonal is not reducible (Finney and 
Heck, 1996), so the new instrumentation introduced a 
MIMO problem for loops 4 to 7. Loop 1 is a SISO 
problem and models 2 and 3 are in open loop. 
 
Disconnecting the loop from 3y  results in the simpler 
characteristic connection matrix: 
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This shows models 1 and 4 are SISO closed loops 
while the rest are in open loop. 
 
 

7. CONCLUSION 
 
A transfer function connection matrix model has been 
proposed for defining dynamic systems and for 
analysing connections within an interconnected 
system. This algebraic model separates the dynamics 
and the connections into two independent sets of 
equations in one integral model of the entire system. 

This allows the effects of its interconnections to be 
analysed without direct reference to its dynamics 
thereby reducing, or possibly eliminating, the need 
for parallel mathematical objects, such as digraphs 
and adjacency matrices. In industrial applications it 
postpones and minimizes the need for costly dynamic 
modelling. The TFCM model is very flexible and can 
always be formulated in such a way that its dynamics 
form a diagonal transfer function matrix. In such 
cases the model can be used to decompose large scale 
systems at unit process level. 
 
The TFCM model has been shown to predict the rapid 
change in system complexity, from SISO to MIMO, 
that was encountered in the design of a control 
scheme for a large industrial plant. 
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