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Abstract— A method to improve adaptivity of soft sensors
is investigated in this paper. Soft sensors have become very
important in the chemical industry to achieve a highly efficient,
high-quality and safe production system. Among the various
methods, partial least squares (PLS) method is the most used for
soft sensors. In this research, a co-learning style locally weighted
PLS method which utilizes a semi-supervised regression is
proposed to estimate a process value. The method is applied
to a simulated reactor process, and the results clearly show
an improvement in the estimation accuracy compare with the
conventional method.

I. INTRODUCTION

In process industry, soft sensors have been widely used to
estimate important variables[1], [2], [3]. The most popular
methods for soft sensors are data-driven approaches such
as multi-variate regression, partial least squares (PLS) and
neural networks[4], [5]. They are using single model for
relatively wide operating regions.

To increase the adaptivity of soft sensors, several types
of just-in time methods have been shown to be useful[6].
To continuously update the estimation model of the soft-
sensor, recursive PLS has been proposed[7]. Recently, to
cope with changes in process characteristics as well as
nonlinearity, locally weighted partial least squares (LW-PLS)
was developed[8], [10].

In LW-PLS, data containing measurements of variables
must be corrected to estimate and compile the database in
advance. In the sparse region of the database, estimation
performance of the method becomes poor. In this papert, a
co-training style semi-supervised LW-PLS algorithm named
co-learning style locally weighted PLS (COPLS) is proposed.
This algorithm is a method to combine LW-PLS with co-
training style self training to use unabeled samples in the
sparce region. By combining self training with LW-PLS, the
chances for online updates of the database are increased. As
the result, the new method will improve adaptivity of the
soft sensor.

The rest of this paper is constructed as follows. In sec-
tion II, the co-training style LW-PLS algorithm COPLS is
explained. In section III, a case study of the algorithm
is discussed in comparison with the LW-PLS. Finally, this
research is concluded in section IV.
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II. METHOD
A. Locally weighted PLS

Typical data-driven soft sensors are constructed using a
regression model. Among the various types of regression
models, PLS model has been widely used for soft sensors[9],
[4].

Once the model is built, usual PLS does not change its
parameters even if the system changes as time elapses. This
means that model maintenance is required to keep the model
matched to the process. Therefore, various adaptive methods
have been developed[1]. LW-PLS was proposed[8], which
introduced a just-in-time learning concept to PLS. LW-PLS
constructs a local PLS model by prioritizing samples in a
database according to their similarity with a query sample.
The similarity is usually defined based on the Euclidian
distance or Mahalanobis distance. In this papet, Euclidian
distance is considered.

Let the i-th sample of input and output variables be

M
: 7yiL]T (2)

where M and L are the number of input and output variables.
In this paper, the number of output variables is assumed to
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be one.
The similarity w; between a query sample Xy and X; is
measured using the normal Euclidian distance d;.
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wherte 0g is the standard deviation of d;(i = 1,2,---, N) and

@ is a localization parameter, N is the number of samples.
For a query sample X, the similarity w; is calculated using
Eq. 4 and a local PLS model is constructed with a similarity

matrix €.
Q = diag(wr,ws, -, w)

)

In an extreme case, if the similarity matrix €2 is an identity
matrix, the LW-PLS becomes the same as usual PLS.



B. Self Training and Regression

Most data-driven soft sensors use the machine learning
method. Traditionally, there have been two fundamentally
different approaches in machine leaming. The first approach
is supervised learning, which requires labeled data. The
second is unsupervised learning, which does not require
labeled data. Semi-supervised learning is halfway between
supervised and unsupervised learning. It uses unlabeled data
in addition to labeled data. In this study. we focused on the
semi-supervised approach.

Semi-supervised learning algorithms have been eagerly
studied during the past few years[11]. Research on semi-
supervised learning mainly studies classification. Although
semi-supervised regression is very important, not many stud-
ies have been investigated on the regression. Among some
algorithms for semi-supervised regression, this study is based
on the algorithms proposed by Zhou & Li[12]. The algorithm
utilizes the idea of co-training, which trains two classifiers
separately on two sufficient and redundant views. It employs
two k-nearest neighbor regressors with different distance
metrics. The influence of the labeling of unlabeled examples
on the labeled examples is analyzed to choose appropriate
unlabeled examples to label.

For each unlabeled example x,. its k-nearest labeled
examples R, is identified. The most confidently labeled
example is identified by maximizing the following value

S = ) (vi—h(x))’ = > (vi—H(x:))%
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where h is the original regressor, and h’ is the one refined
with (X, ¥.). Note that §,, = h(x,).

The output of the final regressor is the average of both
regressors.

h*(0) = 5(A(x) + ' (x)) ™

C. COPLS

The basic idea of our proposed method is to combine the
self-training method with LW-PLS for the modeling of soft
sensors. To choose appropriate unlabeled examples to label,
a labeling confidence is estimated. The labeling confidence
is calculated by consulting the influence of the labeling of
labeled and unlabeled examples on the labeled examples.
The mechanism for estimating the labeling confidence is the
key to the algorithm. The original self-training algorithm is
modified in several ways for this purpose.

In this study., both absolute and relative evaluation of
the confidence was employed. We also added conditions to
activate the self-learning. We did not repeat the addition of
the data.

Let Dg be a selected k-nearest local subset of measured
values, that is real value labeled data. Similar to Eq. 6. the
following values were used as a confidence evaluation in this
algorithm.

de = Z (i — 9i(x:))* — Z (i — 9i(x:))?
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where 7;(x;) is the estimate of y for the sample x; by the
locally weighted PLS model, and 7.(x;) is the one refined
with the query sample and its estimates (Xq, 7q)-

A max — T Ai 9
e Dnax lyi — il ©)
Aéppa, = max |y; — i (10

x;€Ds

Assuming that the datasets x; and y; are normalized to
have zero average and unit standard deviation. The COPLS
estimates the value y, by the following procedure.

1) Calculate the Euclidian distances between the samples
x; and Xq.
2) Select y; corresponding to k-nearest x; from x, and
generate a subset of the database.
3) Build a local PLS model for the selected subset Dg of
the dataset.
4) Calculate j, from x, based on the local PLS model.
5) Calculate Aep,.y for the selected subset, and only if
Aepax > €*, the following self training is activated.
When Aena, is small, the data subset Dg is considered
to be dense enough, and the refinement by self-training is
not necessary. The following procedure describes the self
training for sparse data subset.

1) Temporarily add (x4, 7q) to the database.

2) Select k-nearest subset from x4 and build a local PLS
model, and calculate the estimate gg from the model.

3) Calculate Ael  and Je.

4) If Aejp,., < €* and de > 0 then finally add (x4, 3q) to
the database. Otherwise eliminate the temporary added
dataset from the database.

COPLS repeats this procedure for every new query sam-
ples and updates the database. In this procedure, e* is an
adjusting parameter to be fixed.

III. A CASE STUDY
A. Problem Definition

A schematic of the case study process is shown in Fig. 1.
In this process, raw material A is continuously fed into the
reactor. In the reactor, liquid product B is produced by an
irreversible reaction from A to B. Reactor temperature 7' is

Car Qr Tr

Qc Ter

Schematic of the case study plant



TABLE I
PROCESS VARIABLES

A =0.1666 m?
ko = 3.0 x 1019 min—?

Q = 0.1 m%/min
Qc = 6.6 x 1073 m®/min

Ter = 300 K AH = —5.0 x 10* J/mol

T =430 K pCp = 2.39 x 10° J/(m3 - K)

Tc =384.8 K pcCpc = 4.175 x 10° J/(m® - K)
Tr =320 K E/R=8.75x10% K

Car = 1.0 x 10° mol/m?
C4 = 22.4 mol/m3
h=0.6 m

UAc = 5.0 x 10* J/(min - K)
Vo = 0.356 m3

controlled by coolant flow rate Q¢ to the jacket. Liquid level
h in the reactor is controlled by the outlet flow rate Q with
cascaded controller.

The mathematical model used for the simulation is sum-
marized as follows:

dCa . _p/RT QrCar —QCx
7 . koe Ca+ m (11)
_kne—E/RT O, (_
dt pCp
+QFTF -QT " UAc(Tc -T)
Ah pC, AR
e _ Qo(Ter —To) | UAc(T —To) (13)
dt Ve pcCpcVe
dh  Qr—-Q
at A (14)

Parameters in the model are shown in Table I.
Valve characteristics of the coolant flow and outlet follows:

K
15
Ts+1 (15

Puy(s) =

where K = 1/16 and 7 = 2 s. Both controllers were PI
controllers with 1 min sampling intervals, and the control
parameters were designed based on the IMC method[13].

TABLE II
PI PARAMETERS OF THE CONTROLLERS

Kp [[1 T [mun]
temperature -0.01 -0.000001
coolant flow rate 0.53 0.03
liquid level -1 0.0001
outlet flow rate 0.53 0.03

The abovementioned model was simulated for 180 days
with 5 minutes sampling. During the simulation, values
of six variables, T, Q, Qr,h and Q. were recorded with
measurement noises. System noises were also added to Q.
Figure 2 shows the time series of the generated dataset. In
this simulation, initial temperature was set to 425 K. The
temperature was increased in 10 K steps several times after
100 days. The concentration C's was assumed to be measured
daily. The dataset from the first 90 days was used for training
and that from the last 90 days was used for evaluation of the
method.
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Fig. 2. Time series of the simulated dataset
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Fig. 3. Cumulative frequency of the absolute estimation error in LOOCV

TABLE III
DETERMINATION OF THE NUMBER OF LATENT VARIABLES

number of latent vaniables  square sum of the estimation error

1 164.465
2 14274
3 5.27
4 5.94
5 6.09

B. Building a Soft Sensor

Based on the leave-one-out cross-validation (LOOCYV),
number of latent variables are determined to maximize the
estimation  accuracy. Table III shows the result of the
estimation error for each number of latent variables. From
this table, the number of latent variables are determined to
three.

To investigate th effect of the tuning parameter e* in the
COPLS method, we evaluated the COPLS estimation with
e* =0.15,0.20,0.25,0.30 and 0.35 in this case study.

C. Estimation Results

The estimation results of C4 by LW-PLS for the last 90
days are shown in Fig. 4. Between 90 and 100 days, the
operating conditions were the same as the first 90 days and
the estimation was very close to the true value, where red
lines cannot be observed because they overlap the black
lines.. After 100 days, the estimation accuracy decreased
because the operating conditions were different from the
original dataset. In this region, the dataset became sparse
and was hard to model by PLS linear approximation.

Figures 6 and 5 show the estimation result of C4 using the
proposed COPLS method. In these figures, samples between
90 and 100 days have the same operating conditins as the
trainig dataset and can be estimated very well by all methods.
After 100 days. the operating conditions became gradu-
ally different from the training datasets, and the estimation
accuracy of the LW-PLS method is reduced because the
corresponding region of the samples in the dataset became
sparse. By comparing Figs. 4 with 6 and 5, it is clear that
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TABLE IV
SUMMARY OF THE ESTIMATION ACCURACY

method RMSE R?

LWPLS 2148 0.934
COPLS (e* =0.15)  0.925  0.977
COPLS (e* =0.20) 0.907  0.987
COPLS (e* =0.25) 0.855  0.988
COPLS (e* =0.30)  0.998  0.984
COPLS (e* =0.35) 0.886  0.987

the proposed method is more accurate than the LW-PLS
estimation.

To evaluate the result qualitatively, root mean square error
(RMSE) and the coefficient of determination R? of the
estimation was calculated and is summarized in Table IV
for estimations using the LW-PLS and COPLS methods. As
can be observed from the RSME values, the COPLS method
(e* = 0.25) had the best estimation accuracy among these
methods. In this case, the RMSE became 39.8% of the T.W-
PLS estimation. The value of R? using the LW-PLS method
came closer to that using the LW-PLS method. This also
shows that the COPLS estimation is accurate.

About the computation time of COPLS method, the CPU
time for one sample was at most 600 m second, where the
calculation was executed as a single processor on a 3.0GHz
Intel Core 2 Duo processor with 4GB of memory. When the
self-training part of the procedure was not activated, the CPU
time was about 200 m second.

IV. CONCLUSIONS

A co-learning style locally weighted partial least squares
method was proposed to estimate process values of a process
system. The original measured dataset for the regression was
extended by adding unmeasured data based on the evaluation
of estimated confidence values.

The method was applied to a simulation of a reactor
process and the estimation accuracy was improved by more
than double in RMSE compared with the original LWPLS
method. The improvement in the accuracy in the sparse data
region, in particular, was significant.

V. NOMENCLATURE

Symbol  Contents Unit

A Cross section area of the reactor [m?]

Ac Contact area of the cooling jacket [m?]

Ca Outlet concentration of A [mol m?]
Car Inlet concentration of A [mol m?]
T Reactor temperature K]

Tc Outlet coolant temperature (K]

Tcr Inlet Coolant temperature K]

Tr Feed temperature K]

h Liquid level in the reactor [m]
—AH  Reaction heat [J /mol]
Q Reactor outlet flowrate [m? fmin]
Qc Coolant flowrate [m? /min]
Qr Feed flowrate [m? fmin]
U Overall heat transfer coefficient [W/m?K]
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