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Abstract— A method to improve adaptivity of soft sensors 
is investigated in this paper. Soft sensors have become very 
important in the chemical industry to achieve a highly efficient, 
high-quality and safe production system. Among the various 
methods, partial least squares (PLS) method is the most used for 
soft sensors. In this research, a co-learning style locally weighted 
PLS method which utilizes a semi-supervised regression is 
proposed to estimate a process value. The method is applied 
to a simulated reactor process, and the results clearly show 
an improvement in the estimation accuracy compare with the 
conventional method. 

I. INTRODU CTION 

In process industry, soft sensors have been widely used to 
estimate important variables[1], [2], [3]. The most popular 
methods for soft sensors are data-driven approaches such 
as multi-variate regression, partial least squares (PLS) and 
neural networks[4], [5]. They are using single model for 
relatively wide operating regions. 

To increase the adaptivity of soft sensors, several types 
of just-in time methods have been shown to be useful[6]. 
To continuously update the estimation model of the soft-
sensor, recursive PLS has been proposed[7]. Recently, to 
cope with changes in process characteristics as well as 
nonlinearity, locally weighted partial least squares (LW-PLS) 
was developed[8], [10]. 

In LW-PLS, data containing measurements of variables 
must be corrected to estimate and compile the database in 
advance. In the sparse region of the database, estimation 
performance of the method becomes poor. In this paper, a 
co-training style semi-supervised LW-PLS algorithm named 
co-learning style locally weighted PLS (COPLS) is proposed. 
This algorithm is a method to combine LW-PLS with co­
training style self training to use unabeled samples in the 
sparce region. By combining self training with LW-PLS, the 
chances for online updates of the database are increased. As 
the result, the new method will improve adaptivity of the 
soft sensor. 

The rest of this paper is constructed as follows. In sec­
tion II, the co-training style LW-PLS algorithm COPLS is 
explained. In section III, a case study of the algorithm 
is discussed in comparison with the LW-PLS. Finally, this 
research is concluded in section IV. 

II . METHOD 

A. Locally weighted PLS 

Typical data-driven soft sensors are constructed using a 
regression model. Among the various types of regression 
models, PLS model has been widely used for soft sensors[9], 
[4]. 

Once the model is built, usual PLS does not change its 
parameters even if the system changes as time elapses. This 
means that model maintenance is required to keep the model 
matched to the process. Therefore, various adaptive methods 
have been developed[1]. LW-PLS was proposed[8], which 
introduced a just-in-time learning concept to PLS. LW-PLS 
constructs a local PLS model by prioritizing samples in a 
database according to their similarity with a query sample. 
The similarity is usually defined based on the Euclidian 
distance or Mahalanobis distance. In this paper, Euclidian 
distance is considered. 

Let the i-th sample of input and output variables be 

xi = [xi1, xi2, · · · , xiM ]
T (1) 

yi = [yi1, yi2, · · · , yiL]T (2) 

where M and L are the number of input and output variables. 
In this paper, the number of output variables is assumed to 
be one. 

The similarity ωi between a query sample xq and xi is 
measured using the normal Euclidian distance di. √ 

di = (xi − xq)T(xi − xq) (3) 

di
ωi = exp(− ) (4)

σdφ 

where σd is the standard deviation of di(i = 1, 2, · · · , N ) and 
φ is a localization parameter, N is the number of samples. 

For a query sample xq, the similarity ωi is calculated using 
Eq. 4 and a local PLS model is constructed with a similarity 
matrix Ω. 

Ω = diag(ω1, ω2, · · · , ωN ) (5) 

In an extreme case, if the similarity matrix Ω is an identity 
matrix, the LW-PLS becomes the same as usual PLS. 
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TABLE IV 

SU M M A RY O F T H E E S T I M AT I O N AC C U R AC Y 

method RMSE R2 

LWPLS 2.148 0.934 
COPLS (e� = 0.15) 0.925 0.977 
COPLS (e� = 0.20) 0.907 0.987 
COPLS (e� = 0.25) 0.855 0.988 
COPLS (e� = 0.30) 0.998 0.984 
COPLS (e� = 0.35) 0.886 0.987 

the proposed method is more accurate than the LW-PLS 
estimation. 

To evaluate the result qualitatively, root mean square error 
(RMSE) and the coefficient of determination R2 of the 
estimation was calculated and is summarized in Table IV 
for estimations using the LW-PLS and COPLS methods. As 
can be observed from the RSME values, the COPLS method 

∗(e = 0.25) had the best estimation accuracy among these 
methods. In this case, the RMSE became 39.8% of the LW­
PLS estimation. The value of R2 using the LW-PLS method 
came closer to that using the LW-PLS method. This also 
shows that the COPLS estimation is accurate. 

About the computation time of COPLS method, the CPU 
time for one sample was at most 600 m second, where the 
calculation was executed as a single processor on a 3.0GHz 
Intel Core 2 Duo processor with 4GB of memory. When the 
self-training part of the procedure was not activated, the CPU 
time was about 200 m second. 

I V. CONCL USIONS 

A co-learning style locally weighted partial least squares 
method was proposed to estimate process values of a process 
system. The original measured dataset for the regression was 
extended by adding unmeasured data based on the evaluation 
of estimated confidence values. 

The method was applied to a simulation of a reactor 
process and the estimation accuracy was improved by more 
than double in RMSE compared with the original LWPLS 
method. The improvement in the accuracy in the sparse data 
region, in particular, was significant. 

V. NO M E N C L AT U R E 

Symbol Contents Unit 
A Cross section area of the reactor [m2] 
AC Contact area of the cooling jacket [m2] 
CA Outlet concentration of A [mol/m3] 
CAF Inlet concentration of A [mol/m3] 
T Reactor temperature [K] 
TC Outlet coolant temperature [K] 
TCF Inlet Coolant temperature [K] 
TF Feed temperature [K] 
h Liquid level in the reactor [m] 
−∆H Reaction heat [J/mol] 
Q Reactor outlet flowrate [m3/min] 
QC Coolant flowrate [m3/min] 
QF Feed flowrate [m3/min] 
U Overall heat transfer coefficient [W/m2K] 
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