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Abstract— In this paper, new swing-up controller for a three-
link underactuated robot using a technique of horizontal bar
gymnast is proposed. This controller is designed based on an
equivalent center of mass(ECM) of the gymnast and the robot.
The ECM of the gymnasts(ECMG) derived by analyzing a video
data and a proposed controller is designed in order to realize
that the ECM of the robot imitates the ECMG. The effectiveness
of proposed controller is verified by the numeric simulation by
using MATLAB/Simulink.

I. INTRODCUTION

The three-link underactuated robot is one of a underactu-
ated systems and is a simple robot modeled on a horizontal
bar gymnast. The first joint of the three-link underactuated
robot doesn’t have an actuator, i.e., the first joint is imitated a
hand of the gymnast. On the other hand the second and third
joint which have an actuator are imitated similarly shoulder
and waist of the gymnast.

As the control problem of the underactuated robot,
a motion controller based on the equivalent center of
mass(ECM)[1] has been proposed for the Acrobot which is
one of the typical example of underactuated robot[?], [3].
This controller [1] designed based on an analysis result of
the equivalent center of mass of the gymnasts(ECMG) and
can be realized that Acrobot imitate the swing-up motion of
the gymnast. An advantage of this method is able to apply
to robot with a number of links that is different from the
number of links of human, because EMC of robots with
a link a different number are formulated a same system, a
variable length single pendulum.

In this paper, a motion controller based on the ECMG is
applied to the control problem of the three-link underactuated
robot so as to prove the controller based on ECMG is
applicable to the robot of many links. This controller is
designed based on analysis result of the behavior of the
ECMG in a swing-up motion and a giant-swing motion
which are basic gymnastic motion.

In order to get the behavior of the ECMG of the swing-
up and giant-swing motion, it is necessary to analyze the
video data which is captured the behavior of the gym-
nast and to a Body Segment Parameters(BSP) of Japanese
athletes[4]. From analysis data, an efficient motion of the
gymnast is identified and this motion is formulated in simple
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approximation equations. For the controller of the three-link
underactuated robot, the partial linearization controller[2],
[3], [5] which is one of the nonlinear control methods based
on a structure theory[5] and is often used as a controller
for the underactuated system [2], [3], [6] is designed so as
to replicate motion of the three-link underactuated robot as
same as the efficient motion of gymnast.

Finally, in order to show the effectiveness of controller,
simulations of swing-up and giant-swing control of the
three-link underactuated robot are performed by MAT-
LAB/Simulink.

II. THE THREE-LINK UNDERACTUATED ROBOT

A. Dynamics of the three-link underactuated robot

Fig. 1 shows the model of the three-link underactuated
robot driven by control inputs τ2 and τ3 which are the control
inputs torque for actuators with the second joint and the third
joint. The dynamics of the three-link underactuated robot is
shown as
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where, matrix M means the inertial force and vector h,
φ, µ means the centrifugal and Coriolis force, the gravity,
the friction force, respectively. Parameter functions of the
dynamics are shown as

M11=C1+C2+C3+2(C4+C5) cos q2+2C6 cos q3+2C7 cos (q2+q3)

M12=M21=C2+C3+(C4+C5) cos q2+2C6 cos q3+C7 cos (q2+q3)

M13=M31=C3+C6 cos q3+C7 cos (q2+q3)

M22=C2+C3+2C6 cos q3,M23=M32=C3+C6 cos q3,M33=C3

h1=−(2q̇1q̇2+q̇2
2)(C4+C5) sin q2−C6(q̇3

2+2q̇1q̇3+2q̇2q̇3) sin q3

−C7(q̇2
2+q̇3

2+2q̇1q̇3+2q̇2q̇3+2q̇1q̇2) sin (q2+q3)

h2= q̇1
2((C4+C5) sin q2+C7 sin (q2+q3))

−C6 sin q3(q̇3
2+2q̇1q̇3+2q̇2q̇3)

h3= q̇1
2(C7 sin (q2+q3)+C6 sin (q3))+C6(2q̇1q̇2+q̇2

2) sin q3

φ1=G1 sin q1+G2 sin (q1 + q2)+G3 sin (q1+q2+q3)

φ2=G2 sin (q1+q2)+G3 sin (q1+q2+q3)

φ3=G3 sin (q1+q2+q3)

C1=I1+m1lc1
2+m2l1

2+m3l1
2
, C2 = I2+m2lc2

2+m3l2
2

C3=I3+m3lc3
2
, C4 = m2l1lc2, C5 = m3l1l2

C6=m3l2lc3, C7 = m3l1lc3

G1=m3l1g,G2 = m3l2g,G3 = m3lc3g

and the parameters of the three-link underactuated robot are
defined in Table I.
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Fig. 1. the three-link underactuated robot

TABLE I

DEFINITIONS OF PARAMETERS (i=1,-,3)

mi Mass of the i-th link [kg]
li Length of the i-th link [m]
lci Length to the center of mass of the i-th link [m]
Ii Moment of inertia of the i-th link [kgm2]
τi Torque which acts on the i-th link [Nm]
qi Angle of the i-th link [rad]
q̇i Angular velocity of the i-th link [rad/s]
µi Coefficient of friction which acts

on the i-th joint [Nms/rad]

B. ECM of the three-link underactuated robot

For applying a technique of the gymnast to a controller of
the three-link underactuated robot whose number of links
are fewer than the gymnast, we used controller which is
designed based on ECMG[1], which is a center of the
mass of whole system. By using this method, the behavior
of the ECM of the three-link underactuated robot(ECMR)
and ECMG can be treated as a same system which is a
variable length single pendulum, which is shown in Fig.
1, and it is easy to apply a technique of the gymnast to
controller of the three-link underactuated robot. Moreover,
applying this method to another underactuated serial linkage
systems can be expected, because the ECM of all serial
linkage systems can be shown by the variable length single
pendulum. Therefore, this method can not only apply to
Three-links robot, but also apply to more links robot.

Coordinate data (xg, yg) of the ECMR shown in Fig. 1 is
shown by

xg=
m1x1 +m2x2 +m3x3

m1 +m2 +m3
(2)

yg=
m1y1 +m2y2 +m3y3

m1 +m2 +m3
(3)

where

(x1, y1)=(lc1 sin q1, lc1 cos q1)

(x2, y2)=(l1 sin q1+lc2 sin(q1+q2), l1 cos q1+lc2 cos(q1+q2))

(x3, y3)=(l1 sin q1+l2 sin(q1+q2)+lc3 sin(q1+q2+q3),

l1 cos q1+l2 cos(q1+q2)+lc3 cos(q1+q2+q3))

the x-axis and y- axis are the horizontal-line and the vertical-
line shown in Fig. 1,respectively. From coordinate data of the
ECMR, the angular position qg of the ECMR and the length
lg from the root to the ECMR are obtained as

qg = arctan
xg

yg
(4)

lg =
√

x2
g+y

2
g=

√

f1+f2 cos q2+f3 cos(q2+q3)+f4 cos q3(5)

where


































f1 = 2m1lc1m2l1+m2
2l1

2+m3l2(2m2lc2+m3l2)
(m1+m2+m3)2

+ f5

f2 = m3l1(2m1lc1+2m2l1+m3l1)+m3l2(2m2lc2+m3l2)+m3
2lc3

2

(m1+m2+m3)2

f3 = 2m3lc3(m1lc1+m2l1+m3l1)
(m1+m2+m3)2

f4 = 2m3l2lc3(m2+m3)
(m1+m2+m3)2

f5 =
m2

1
l2c1+m2

2
l2c2+m2

3
l2c3+m3l1(2m1lc1+2m2l1+m3l1)
(m1+m2+m3)2

III. ANALYSIS OF THE ECM OF THE GYMNAST

This section discusses numerical analysis of the technique
of the gymnast. In this study, a motion of a KIP that is
typical basic technique of swing-up and a Giant-swing of the
gymnast are analyzed by using the motion capture technique.

A. Getting a motion data of the ECM of the gymnast

As a experimental technique data of the gymnast, the
motion of the KIP and the giant-swing are recorded by a
video camera(frame rate is 26.1[frame/sec]) and analyzed
by using a motion capture technique. The personal data are
following.

- Age : 13 [years old]
- Gender : Male
- Body height : lh=1.456 [m]
- Body weight : mh=38.2 [kg]
- Gymnastic career : 6 [years]

For analyzing behavior of the gymnast, at first, coordinate
data of body of the gymnast for each flames are derived by
using motion capture software (PV Studio 2D, OA SCIENCE
Co.,Ltd.) and coordinate data of the ECNG are computed by
coordinate and physical data of the gymnast. Coordinate data
(xhg, yhg) of the ECMG can be obtained as follow.

1. Separating a human body in 6 segments (forearm,
upper arm, head, body, thigh and lower legs)

2. Estimating a mass and a length from joint to the center
of mass of each segment by using Body Segment
Parameters(BSP) of Japanese athletes[4].

3. Coordinate data of the ECMG can be derived by
combining estimated mass, length from joint to the
center of mass and angular position of each segment.

Moreover, using coordinate data of the ECMG, an angular
position qhg of the ECMG , a length lhg , a potential energy
Uh, a kinetic energy Th from the root to the ECMG are
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obtained as following equations.

qhg = arctan
xhg

yhg
(6)

lhg =
√

x2
hg + y2hg (7)

Uh = mhglhg(1− cos qhg) (8)

Th =
1

2
mh(l̇

2
hg + l2hg q̇

2
hg) (9)

B. Analyzing the behaviors of the ECMG of the kip motion

The behaviors of the ECMG of the swing-up motion are
shown in Fig. 2 which illustrates the behaviors of qhg, lhg,
Uh and Th.
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Fig. 2. Behavior of the ECMG of the swing-up motion
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Fig. 3. Behavior of the ECMG of the swing-up motion(enlarged figure of
range enclosed by the square (a) in Fig.2)
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Fig. 4. Behavior of the ECMG of the swing-up motion(enlarged figure of
range enclosed by the square (b)in Fig.2)

For analyzing the behaviors of the ECMG in the swing-
up motion, we focus on a motion of a first swing-up action
(Frame=35-70 shown by square (a) in Fig.2) and a motion

(Frame=140-210 shown by the square (b) in Fig.2) when qhg
is large values.

Fig.3 and 4 show enlarged figures of range enclosed by
the square (a) and (b) in Fig.2, respectively.

From Fig.3 and 4, it shows that kinetic energy of the
gymnast is sharply increasing after swinging lhg slowly, that
is, in the motion of KIP, the gymnast can get a large swing
by repeating simply the motion of moving the ECM close
to the horizontal bar. Thus, we regard these simple motions
as a most efficient motion for swing-up and a relationship
between qhg and lhg in these motions are formulated in order
to apply these efficient motions to the swing-up control of
the three-link underactuated robot.

An approximative length lshg of the ECM, which corre-
sponds to angular position qhg of ECM in swing-up motion,
can be obtained as simple low order polynomial equations
as following equations.

lshg(qhg) =























lhg1 (|qhg < 0.451 ∩ q̇hg ≥ 0)
lhg2 (|qhg < 0.451 ∩ q̇hg < 0)
lhg3 (0.451 ≤ |qhg|, 0 ≤ qhg ∩ q̇hg ≥ 0)
lhg4 (0.451 ≤ |qhg|, 0 > qhg ∩ q̇hg ≥ 0)
lhg5 (0.451 ≤ |qhg|, q̇hg < 0)

(10)

where, lhg1 and lhg2 replicate the motion of Fig.3, lhg3, lhg4
and lhg5 replicate the motion of Fig.4.







































































































lhg1 = 0.0008975t21 − 1.3996t1 + 545.89

where t1 =
1.6784−

√
1.67842−(0.0042884(656.42+qhg))

0.0021442

lhg2 = 0.0008975t22 − 1.3996t2 + 545.89

where t2 =
1.6784+

√
1.67842−(0.0042884(656.42+qhg))

0.0021442

lhg3 = 0.0038465t23 − 0.010063t3 + 0.14741

where t3 =
qhg−1.1499

0.12712

lhg4 = −0.0047824t24 + 0.0022503t4 + 0.60712

where t4 =
qhg−0.13846

0.78684

lhg5 = −0.0034581t25 − 0.0048116t5 + 0.61030

where t5 =
qhg−0.34275
−0.16418

C. Analyzing the behaviors of the ECMG of the giant-swing
motion

The behaviors of the ECMG in the giant-swing motion are
shown in Fig. 5 which illustrates the behaviors of qhg, lhg,
Uh and Th.

Since the giant-swing motion of the gymnast repeats the
same motions, we analyzed only one period of the giant-
swing motion of the gymnast. This motions are divided into
4 actions so called ’Afuri’, ’Nuki’, ’Otoshi’ and ’Hiraki’[7].
For applying these motions to the giant-swing control of the
three-link underactuated robot, these motions are formulated
in simple approximation equations.
By analyzing using Fig.5, the relationship between the length
and angular position of the ECM in the giant-swing motion
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can formulated approximately by simple second order poly-
nomial expression. Formularization of Fig.5 results in

l
g
hg(qhg) =































lhg6 (−π ≤hg< −2.50)
lhg7 (−2.50 ≤ qhg < −1.57)
lhg8 (−1.57 ≤ qhg < −0.909)
lhg9 (−0.909 ≤ qhg < 0.629)
lhg10 (0.629 ≤ qhg < 2.36)
lhg11 (2.36 ≤ qhg < π)

(11)

where


























































































































lhg6 = −0.0006297t26 + 0.022405t6 + 0.39586

where t6 =
−0.010172+

√
0.00010172+0.0047(3.509+qhg)

0.0024

lhg7 = −0.0011847t27 + 0.069355t7 − 0.42656

where t7 =
0.26307+

√
0.0692+0.0250(−0.14709+qhg)

0.0125

lhg8 = −0.011664t28 + 0.82802t8 − 14.116

where t8 =
4.1971+

√
17.6156+0.2492(−69.104+qhg)

0.1246

lhg9 = −0.0034048t29 + 0.27973t9 − 5.1322

where t9 =
1.3045+

√
1.7017+0.0737(−22.107+qhg)

0.0368

lhg10 = 0.0028537t210 − 0.29233t10 + 7.9386

where t10 =
qhg+5.8746

0.14893
lhg11 = −0.00034387t211 + 0.0056854t11 + 0.56311

where t11 =
qhg−2.5417
0.051675
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Fig. 5. Behavior of the ECMG of the giant-swing motion

IV. CONTROLLER BASED ON TECHNIQUE OF
THE GYMNAST

In this section, detailed structure of proposed controller is
discussed. Controller (depicted in Fig.6) is designed focusing
on the ECMR and the ECMG and has three sections.

1. Deriving a relationship of the ECM by connecting the
ECM of gymnast with the ECM of robot.

2. Transform lrg based on an analysis result in section
III to desired angular position qr2 of second link and
angular position qr3 of third link.

3. Tracking controller using partial linearization method
in order to track q2 to qr2 and q3 to qr3[5].

Fig. 6. Block diagram of proposed controller

A. Deriving a relationship of ECM

A desired length of the ECMR, which can reproduce a
KIP and giant swing motion, is decided based on analysis
results lsg and lgg shown by eq.10 and 11, respectively.

Since lsg and lgg are the desired lengths of the ECMG
corresponding to qg and since the size of human and the
three-link underactuated robot are not the same, lsg and lgg
are transformed to lrg so as to match the size of the Acrobot
by using following transform equation.

lrg = lmin
g + (lihg(qg)− lmin

hg )
lmax
g − lmin

g

lmax
hg − lmin

hg

, (i = s, g) (12)

where lmax
g (lmin

g ) means maximum(minimum) length of the
ECMR and lmax

hg (lmin
hg ) means maximum(minimum) length

of the ECMG, respectively.

B. Transform lrg to qr2 and qr3

Fig. 7. The pattern of the link which attains the one ECM

A desired angular positions of the second link and the
third link realizing desired length lg

r of the ECM is derived
by using eq. (5). However, in the three-link underactuated
robot, multiple patterns of a link achieving the center of
gravity position of the robot exist as shown in Fig.6. Thus, in
this study, we assume a desired angular position qr2 = qr3 to
decide the ECMR. By substituting lrg to lg in eq. (5), desired
angular position of the second link qr2 and the third link qr2
can be obtained by

qr2 = qr3 = arccos

(−(f2+f4)+f

4f3

)

(13)

f =
√

(f2+f4)2−8f3(f1−f3−lg2)
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C. Tracking controller of q2 for qr2 and q3 for qr3

The controller to track the angular positions of the second
link q2 and the third link q3 to the desired angular positions
q2

r and q3
r is used partial linearization method[5].

Now, following nonlinear feedback is designed as control
input.

τ2=
Mc(φ1+h1)+(M

′

22M
′

33−M ′

23M
′

32)(φ2+h2)+Ma

M ′

22M
′

33−M ′

23M
′

32

(14)

τ3 =
Md(φ1+h1)+(M

′

22M
′

33−M ′

23M
′

32)(φ3+h3)+Mb

M ′

22M
′

33−M ′

23M
′

32

(15)

Ma = M ′

33|M |υ2−M ′

22|M |υ3
Mb = −M ′

32|M |υ2+M ′

22|M |υ3
Mc = (M ′

21M
′

33−M ′

23M
′

31)

Md = (M ′

22M
′

31−M ′

32M
′

21)

where, |M | is a determinant of the inertial matrix M in
eq. (1), M ′

ij are elements of the inverse inertial matrix M−1.
Moreover, υ2,υ3 are the equivalent control input which can
be set in nonlinear feedback eq. (14), eq. (15) and it can be
achieved

q̈2 = υ2 (16)

q̈3 = υ3. (17)

In order to track q2 to qr2 and q3 to qr3 , let equivalent control
υi(i = 2, 3) are designed as

υi = q̈i = −kpi(qi − qri )− kdiq̇i, (kpi > 0, kdi > 0)

(18)

then linearized subsystem is

q̈i + kpi(qi − qri ) + kdi(q̇i − q̇ri ) = 0. (i = 2, 3) (19)

Since eq. (19) are stable polynominal equations, it is possible
to track the angular positions of the second link q2 and the
third link q3 to the desired angular positions qg

r, that is,

lim
t→∞

q2 = qr2, lim
t→∞

q3 = qr3.

As a result, tracking the length of the ECMR lg to the desired
length lg

r can be achieved and the ECMR operates similarly
most efficient motion for swing-up and giant-swing to the of
the ECMG.

V. NUMERICAL SIMULATIONS

In this Section, in order to verify an effectiveness of
proposed controller, a numerical simulation of swing-up and
giant-swing control of the three-link underactuated robot is
performed by using MATLAB/Simulink.

A. Condition of simulation

The mechanical parameters of the three-link underactuated
robot and several conditions used in the simulation are
shown in Table II,and in Table III. Simulations started
the three-link underactuated robot with initial values as
[q1, q2, q3, q̇1, q̇2, q̇3] = [0, 0, 0, 0, 0, 0].

After swing-up the three-link underactuated robot to up-
right position, controller is switched to giant-swing controller
which based on the ECMG.

TABLE II

PARAMETERS OF THE THREE-LINK UNDERACTUATED ROBOT

1
st link 2

nd link 3rd link
mi[kg] 0.100 0.0750 0.130
li[m] 0.200 0.150 0.260
lci[m] 0.100 0.075 0.130
Ii[kgm2] 3.333×10

−4 1.406×10
−5 7.323×10

−4

µi[Nm] 0.006 0.006 0.006

TABLE III

PARAMETERS OF CONDITIONS USED IN THE SIMULATION

Swing-up controller of the 2ndlink kp=1200/1500 kd=60/60
Swing-up controller of the 3rd link kp=1200/1500, kd=60/60

Giant-swing controller of the 2ndlink kp=4000 kd=100
Giant-swing controller of the 3rd link kp=4000, kd=100

Length of the ECMR lmax
g =0.4080[m]
lmin
g =0.0983[m]

Length of the ECMG lmax
hg

=0.6156[m]
lmin
hg

=0.1269[m]
Sampling time Ts=0.005[s]

swing-up and giant-swing time Tend=20[s]

B. The numerical simulation result and consideration

Fig. 8 shows the simulation results of the swing-up and the
giant-swing control using the method based on the ECMG
and illustrates responses of the angular positions q2, q3, the
control inputs τ2,τ3, the length of the ECMR lg , the angular
position of the ECMR qg , the potential energy Tg and the
kinetic energy Tg of the ECMR, respectively.

Moreove, Fig. 8 illustrates the desired values qr2 , qr3 , and lrg ,
respectively, as broken lines so as to show a comparison be-
tween controlled values and desired values. This comparison
result shows realizing the tracking the controlled values to the
desired values, and proves an effectiveness of the proposed
tracking controller based on the partial linearization method.

From Fig. 8, it shows that the robot can swing-up to
upright position from the pendant position by a simple
motion, and, at T ime = 15.5, the controller is switched
to the giant-swing controller around upright position.

As a result, by applying the behavior of the ECMG to the
three-link underactuated robot, the kinetic energy increases,
the robot can achieve the swing-up and giant-swing motions
based on the ECMG.

VI. CONCLUSION

We applied the controller based on the ECMG to the three-
link under underactuated robot to inspect possibility of the
controller based on the ECMG. The controller based on the
ECMG focuses on the equivalent center of mass(ECM) of
the gymnast(ECMG) and the three-link under underactuated
robot(ECMR), because dynamics of the ECMR and ECNG
can be regarded as same dynamics and this idea can be
expected to applying the another underactuated serial linkage
systems. The Analysis of the EMCG is used motion captur-
ing technique and coordinate data of EMCG is obtained by
using Body Segment Parameters(BSP) of Japanese athletes.
From numerical analysis data of behavior of the ECMG, the
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efficient motion which can be approximated in simple low-
order polynomial equations can be identified for swing-up
and giant-swing. The desired angular positions of the second
link and the third link are computed in order to realize the
motion of ECMR as same as the efficient motion of ECMG.
And tracking controller, which can track the second link and
the third link to desired angular positions, is designed by
partial linearization method. In order to verify this method,
numerical simulations of swing-up and giant-swing control
for the three-link underactuated robot are performed by using
proposed method. As a result, not only the Acrobot but
also the three-link underactuated robot is controllable by the
controller based on the ECMG.It is thought that there is the
possibility of the expansion to another underactuated serial
linkage systems in the controller based on the ECMG.
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Fig. 8. Behavior of the swing-up and giant-swing control of the robot
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