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Abstract— The aim of our study is to develop a brain–
machine interface rehabilitation system for patients with leg
paralyzed. Using this system, the patient’s paralyzed legs are
forcibly moved according to his intention of motion. This may
activate a damaged neural circuit and improve the rehabilita-
tion effect. In this study, we proposed a motion discrimination
method for actual pedal exercise using electroencephalography
(EEG) measured at several positions of the parietal region,
and the discrimination performance was verified with healthy
subjects. Although this method was uses the spatial EEG
information, this often causes false detection owing to the
sudden noise included in the measured EEG signals. In order
to improve the discrimination performance, smoothing of the
motion discriminator output was considered using tempo-
ral information. Thus, we developed a spatiotemporal filter-
based discrimination method and its parameter determination
method. Experimental results indicated that the discrimination
performance of this method is over 10 percentage points higher
than that of the general linear discriminant analysis method.

I. INTRODUCTION

Recently, some brain–machine interface (BMI) based re-
habilitation systems have been proposed for patients that are
severely paralyzed owing to a neurological disease such as
a stroke or spinal cord injury [1], [2], [3], [4], [5]. These
systems force a patient to move his paralyzed part with the
intention of motion detected from brain activity. This may
activate neural circuits and restore damaged motor function
[6].

In such a system, electroencephalography (EEG) is gen-
erally used to detect the patient’s intention to attempt to
move his paralyzed part from his brain activity. Most studies
have used event-related desynchronization (ERD) as a feature
for detecting the patient’s intention [7], [8] . ERD is a
phenomenon in witch the EEG power of a certain frequency
band decreases more when a subject decrease when a subject
executes some task than when he was resting. Therefore, the
patient’s intention may be estimated by using this decrease in
power as a feature, and this was realized using a classification
method such as a linear discriminant analysis (LDA) [9] or
support vector machine (SVM) [10].

On the basis of this background, we have attempted to
develop a BMI rehabilitation system for a patient with para-
lyzed legs. As a preliminary study, we have already studied
a healthy subject’s brain activity during ergometer pedal
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exercise using EEG and proposed a motion discrimination
method that classes a subject’s motion into two conditions:
“pedaling” or “resting” [11], [12]. In this discrimination
method, we used a band power spectrum of EEG signals
in the range of 18–28 Hz measured at six or eight points
around the parietal region as features. However, such features
usually include a considerable amount of noise, causing
discrimination error. In general, most BMI systems target
users that received a feedback training program called the
basket paradigm [13], [14], [15]. Although this training is
known to increase the signal-to-noise ratio of the features, it
requires several weeks and becomes a heavy burden for users.
Therefore, a simple approach was considered to improve the
discrimination accuracy without training for BMI users. In
this approach, we simply smoothed the output of a spatial
filter with a temporal filter that has same structure as an
infinite-impulse response (IIR) filter. All of the parameters of
this filter were optimized by a recursive least-squares method
using learning data.

There are some methods for improving the discrimination
performance using spatial and temporal filtering to discrimi-
nate right and left motor imagery [16], [17] or actual pedaling
conditions [18]. However, these methods obtain the spatial
and temporal filter parameters separately. On the other hand,
our proposed method simultaneously determines all of the
parameters to obtain high discrimination performance.

The experimental results indicated that the discrimination
performance of this method is over 10 percentage points
higher than that of the general LDA method.

II. EXPERIMENTAL SETUP

This section describes the EEG measurement setup. As
shown in Fig. 1, a healthy 24-year-old subject sat on a
chair with his eyes opened and exercised with a bicycle
ergometer. The subject had never experienced any EEG
feedback training. The pedal exercise was repeated with
exercise periods and rest periods every 20 s. A cue for the
ergometer exercise was provided to the subject by visual
stimuli using a personal computer monitor.

The EEG electrodes (NE-121J, Nihon Kohden Corp.,
Japan) were placed at Cz, C3, C4, Fz, F3 and F4 of the
international 10/20 system, and a reference electrode was
placed on the forehead (Fpz), as shown in Fig. 2. These
electrode positions cover the primary sensory and motor
cortices and the supplementary motor area.

EEG signals were applied with a band-pass filter with
from 0.5 to 300 Hz and amplified 105 times by with a
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Fig. 1. Experimental setup.
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Fig. 2. Electrode positions for EEG recording.

biological amplifier(AB-611J, Nihon Kohden Corp., Japan).
These signals were recorded at a 1 kHz sampling rate.

III. FEATURE EXTRACTION AND CONVENTIONAL
MOTION DISCRIMINATING METHOD

A. Feature extraction

Here, we describe the feature extraction method from the
measured electroencephalogram, which is used for motion
discrimination. First, the common average reference (CAR)
is applied to the measured signals [19], [20]. The CAR is
commonly used in EEG, where it is necessary to identify
small-signal sources in very noisy recordings. For EEG
signals, Ei is measured by the difference between the i-th
electrode and the Fpz electrode; its CAR ECAR

k is given by

ECAR
i = Ei −

1

M

M∑
k=1

Ek, (1)

where M is the number of EEG electrodes. (1) means that the
CAR is obtained by subtracting the mean of all electrodes.

Next, a time–frequency analysis using a discrete Fourier
transform (DFT) is applied to the obtained CAR from EEG.
In this process, we use 1000-point-length CAR data to obtain
a spectrum using a DFT and overlap 750 points of data to
analyze the time variation of the spectrum. This provides
us with a 4 Hz sampled spectrum with a 1 Hz frequency
resolution.

Fig.3 shows an example of the time-frequency analysis
results. As shown, it is found that the 18–28 Hz band power
decreases for the subject executing a bicycle ergometer
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Fig. 3. Time–frequency analysis at the Cz position.
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Fig. 4. 18–28 Hz band power changes at the Cz position.

exercise. This power-decreasing phenomenon is known as
event related desynchronization (ERD) [21].

As feature values for status discrimination, we use the
centered (detrended) and scaled signals of each electrode,
which are the square root of the 18–28 Hz power changes.
Fig. 4 shows the feature value of this experiment measured
at Cz .

B. Pedaling motion discrimination by linear discriminant
analysis

LDA is a traditional supervised dimensionality reduction
method [22] that is used for the discrimination problem of
multidimensional data. In the field of BMI studies, LDA is
generally used for detecting the motor imagery of subjects
from features of the ERD [23].

LDA is a method that obtains a linear transformation
matrix WLDA = [wLDA

1 , · · · , wLDA
M ]′ ∈ RM×M which is

called the LDA transformation matrix and used for event
discrimination by features. In this study, the feature values
are set to zt = [zt1, · · · , ztM ]′ ∈ RM . The element zti is the
feature as mentioned in previous section that is calculated
from the electroencephalogram measured by i-th electrode at
time t. Using the LDA transformation matrix and features,
the LDA output is given by

xt = wLDA
1 zt = [a1, · · · , aM ]

 zt1
...

ztM

 =
M∑
j=1

ajztj , (2)

where wLDA
1 = [a1, · · · , aM ].
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The discriminant result is obtained as the sign of xt. The
LDA transformation matrix WLDA is defined as

WLDA = argmax
W

[
tr

(
W ′SbW

W ′SwW

)]
, (3)

where Sw is the within-class scatter matrix, and Sb is the
between-class scatter matrix. These matrices are obtained
from

Sw =
1∑

l=0

∑
i:yi=l

(zi − µl)(zi − µl)
′, (4)

Sb =
1∑

l=0

nl(µl − µ)(µl − µ)′, (5)

where µl =
1
nl

∑
i:yi=l zi and µ = 1

2

∑1
l=0 µl.

In (4)–(5), yi = {0, 1} is the class label of each feature
value (class 0: resting, class 1: pedaling), and nl is the
number of the class l dataset. Then, (3) is solved as a
generalized eigenvalue problem as follows:

SbwLDA
k = λkS

wwLDA
k , (6)

where the eigenvector wLDA
k corresponds with the eigenvalue

λk that is sorted in ascending order: λ1 ≥ λ2 ≥ · · · ≥
λM . Thus, most discriminative eigenvector wLDA

1 is obtained
from the eigenvector that corresponds with the maximum
eigenvalue λ1. Thus, most discriminative eigenvector wLDA

1

is obtained from the eigenvector that corresponds with the
maximum eigenvalue λ1.

IV. PROPOSED SPATIOTEMPORAL FILTERING AND
PARAMETER DETERMINATION

A. Proposed discrimination method using spatiotemporal
filtering

Here, we propose a new discrimination method using the
spatial and temporal information of features. To improve the
discrimination performance, the output is smoothed with the
addition of a temporal filter, which acts as an IIR filter,
to the spatial filter, which has same structure as the LDA
discriminator.

Our proposed discriminator is defined as follows:

xt =
M∑
i=1

aizti +
N∑
j=1

bjxt−j , (7)

where zti is a feature obtained at time t by EEG measured
at i-th electrode, and ai and bj are filter parameters. xt is
the discriminator output at time t. On the right-hand side of
(7), the first term operates as a spatial filter, similar to the
structure of the LDA discriminator in (2), and the second
term is an autoregressive (AR) term that functions as an IIR
filter. The motion discrimination results are obtained as the
sign of xt, i.e., a subject is in the “pedaling condition” if the
sign is positive and “resting condition” if it is negative.

B. Filter parameters determination by a recursive least
square method

In this study, we determine ai and bj using a recursive
least-squares method [24]. From (7), xt is rewritten as

xt = Htθ (8)

where, H and θ are given by:

Ht = [zt1, · · · , ztM , xt−1, · · · , xt−N ],

θ = [a1, · · · , aM , b1, · · · , bN ]′.

To obtain the estimator θ̂ of the filter parameters θ, we
employed a recursive least-squares scheme with learning data
that consist of zti and the actual movement conditions at time
t. This scheme is given by following equations:

Ht = [zt1, · · · , ztM , x̂t−1, · · · , x̂t−N ] , (9)

θ̂t = θ̂t−1 +
Pt−1H

′
t

1 +HtPt−1H ′
t

+ (xt −Htθ̂t−1), (10)

x̂t = Htθ̂t, (11)

Pt =
1

ρ

[
Pt−1H

′
tHtPt−1

ρ+HtPt−1H ′
t

]
. (12)

In above equations, xt was set to −1 when the actual
movement condition was resting and was set to 1 when
the condition was pedaling. On the other hand, x̂t is the
discriminator output calculated from these equations. In
this study, the initial values of this scheme are selected as
H1 = [0, · · · , 0, z11, · · · , z1M ], θ̂0 = [0, · · · , 0], and P0 = I .
Moreover, it is assumed that the filter parameters are time
invariant, and forgetting coefficient ρ was set to 1.

V. RESULTS

To confirm the effectiveness of our proposed discrimi-
nation approach, we carried out pedaling motion discrim-
ination experiments for a healthy subject using LDA and
the proposed method. In this experiments, the EEG data in
Fig. 4 were used for discrimination. The subject’s electroen-
cephalogram during the bicycle ergometer pedal exercise was
recorded for 120 s, and the first 60 s were used as learning
data. The number of electrodes M was set to six in (2) and
(7).

Fig. 5 (a) shows the LDA discrimination output calculated
by (2). The LDA parameters wLDA

1 of (2) were obtained
from the learning data. This output means that the subject
is in the “pedaling condition” if the output has a positive
value and “resting condition” if the output has a negative
value. The LDA discrimination results are shown in Fig. 5
(b). Because a considerable amount of noise was included
in the output of the LDA discrimination results, there were
many false discriminations. When the LDA method was used
for discrimination, the accuracy of the pedaling conditions
for the last 60 s of data was 68.3%.

On the other hand, Fig. 6 (a) shows the proposed filter
output. The parameters of our proposed method, θ̂, was
obtained by the proposed recursive least squares scheme (9)–
(12) using first 60 s of data. In this study, the order of the
AR term N was set to 1.
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Fig. 5. Discrimination output and results of the LDA method

Compared with the LDA discrimination output in Fig. 5
(a), it is found that high-frequency noise of the proposed filter
output was reduced. The discrimination results calculated
from the sign of the proposed filter output shown in Fig.
6 (b). The number of false discriminations in the results was
less than the LDA results.

Consequently, the discrimination accuracy of the proposed
method with the last 60 s of data was 80.8%. Thus, we
confirmed that the discrimination accuracy of our proposed
method was improved by over 12.5 percentage points than
that of LDA.

VI. CONCLUSIONS

In this paper, we described a new discrimination method to
improve the discrimination results of the pedaling movement
condition from EEG. This method use spatial and temporal
information for discrimination. Furthermore, we developed a
new discriminator structure and its parameter determination
method using a recursive least-squares method. The experi-
mental results indicated that the discrimination performance
of our proposed method was improved compare to the
general LDA method.
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M. Wörtz, G. Supp, and C. Schrank, “Graz-BCI: state of the art
and clinical applications,” IEEE transactions on neural systems and
rehabilitation engineering : a publication of the IEEE Engineering in
Medicine and Biology Society, vol. 11, no. 2, pp. 177–180, June 2003.

[24] I. D. Landau, R. Lozano, M. M’Saad, and A. Karimi, Adaptive
Control: Algorithms, Analysis and Applications (Communications and
Control Engineering). Springer, 2011.

366




