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Abstract— PID control systems have been widely employed in
industrial processes. Recently, some data-oriented PID control
systems have been proposed because it is difficult to adjust a set
of suitable PID gains. In this paper, one of data-oriented PID
control schemes, which is designed by using the generalized
output errors, is proposed. The generalized output is defined
from a PID control law. Moreover, PID gains are determined
based on minimizing the errors between an operating data
and the generalized output errors. The proposed scheme has
been designed for single-input/single-output linear systems and
multivariable systems, and the effectiveness of the scheme is
verified by these numerical simulation examples.

I. INTRODUCTION

PID control systems have been effectiveness control meth-
ods for industrial processes, such as petrochemical and
chemical plants. They are implemented in more than 80%
of the control loops in industrial processes[1] due to their
simplicity. Lots of methods which tune PID gains as the
control parameters have been proposed[2], [3], [4], [5]. Most
tuning methods determine PID gains based on the system
model. The system model is constructed using an operating
data through system identification. Thus, the system model
influences the control performance of obtained PID gains
by it. However, it is difficult to obtain high-accuracy sys-
tem models for the following reasons: Systems often have
nonlinearity and uncertainness. System identification needs
input signals including a comfortable Persistently Exciting
(PE), however, the excitation for plants or machines incurs
its instability. The cost of system identification is economical
for strict due date and schedule. In addition, the obtained PID
gains are required to adjust by several experiments until it
satisfies the desired performance.

To overcome these problems, data-oriented control de-
sign methods have been proposed in recent years. These
methods can determine control parameters without a system
model, for example, the IFT (Iterative Feedback Tuning)
method[6], the VRFT (Virtual Reference Feedback Tuning)
method[7] and the FRIT (Fictitious Reference Iterative Tun-
ing) method[8] have been proposed. These schemes adjust
PID gains using the fictitious reference signal so that the
property of closed-loop becomes close to it of the reference
model system. On the other hand, authors have proposed a
scheme based upon minimizing generalized output errors as
one of data-oriented control design schemes. The generalized

1Kayoko Hayashi is with Department of Information
Engineering, Kagoshima National College of Technology; 1490-
1, Shinko, Hayato, Kirishima, Kagoshima, 899-5193, JAPAN
k-hayashi@kagoshima-ct.ac.jp

2Toru Yamamoto with Div. of Electrical, Systems and Mathematical
Engineering, Hiroshima University; 1-4-1 Kagamiyama, Higashi-Hiroshima,
Hiroshima, 739-8524, JAPAN yama@hiroshima-u.ac.jp

output is developed from a PID control law, and the gener-
alized output errors are computed by the difference between
system output of an operating data and the generalized
output. According to the proposed scheme, PID gains can
be obtained by only control specification and an operating
data. Moreover, the concept is clear because the generalized
output is defined as equivalent to the reference signal.

In this paper, a data-oriented PID control system based
on minimizing generalized output is proposed. Section 2
presents the definition of the generalized output, and the
effectiveness of the proposed scheme is verified by a sim-
ulation example in section 3. Section 4 discusses a multi-
variable PID control scheme for decoupling. Because real
processes use multivariable systems with interference. These
control schemes are demonstrated through some numerical
examples, and the its effectiveness is illustrated.

II. THE DESIGN OF THE PROPOSED
CONTROLLER

A. The description of a system

A single-input/single-output linear system is considered.
The discrete-time PID controller is given by the following
equation:

u(k) = u(k − 1) +KP

{
y(k − 1)− y(k)

}
+KI

{
r(k)− y(k)

}
+KD

{
2y(k − 1)− y(k − 2)− y(k)

}
. (1)

where u(k), y(k) and r(k) denote the control input, the
corresponding output signal and the reference signal, respec-
tively. KP , KI and KD are the proportional, the integral
and derivative gains, respectively. As previously noted, it
is important to determine PID gains because they relate to
the control performance. In this paper, the PID gains are
determined by the generalized output error. Thus, the how
to define the generalized output in detail is discussed.

B. The design of the proposed PID controller

First, equation (1) can be rewritten as

∆u(k) + (KP +KI +KD)y(k)

−(KP + 2KD)y(k − 1)

+KDy(k − 2)−KIr(k) = 0 (2)

where ∆ denotes the differencing operator defined by ∆ :=
1− z−1. Next, the both side of equation (2) is multiplied by
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1/KI , the equation is obtained as follows:

∆u(k)

KI
+

KP +KI +KD

KI
y(k)

−KP + 2KD

KI
y(k − 1)

+
KD

KI
y(k − 2)− r(k) = 0. (3)

Next, the generalized output Φ(k) is defined by the following
equation:

Φ(k) := a1∆u(k) + a2y(k)

+ a3y(k − 1) + a4y(k − 2) (4)

where ai(i = 1, · · · , 4) are

a1 =
1

KI

a2 =
KP +KI +KD

KI

a3 = −KP + 2KD

KI

a4 =
KD

KI
.


(5)

From equation (4) and (5), equation (3) can be replaced
as follows:

Φ(k)− r(k) = 0. (6)

Thus, the relationship Φ(k) = r(k) is obtained.
The control objective is to obtain a set of suitable PID

gains so that the system output y(k) tracks the desired
reference model output ym(k) is defined as

ym(k) = Gm(z−1)r(k). (7)

where Gm(z−1) denotes the reference model, and operators
can design initial rise to the desired output shape using it.
Gm(z−1) is given by the following equations.

Gm(z−1) =
z−1P (1)

P (z−1)

=
1 + p1 + p2

1 + p1z−1 + p2z−2
(8)

where the coefficients p1 and p2 are determined by [10]

p1 = −2e−
ρ
2µ cos(

√
4µ−1
2µ ρ)

p2 = e−
ρ
µ

ρ : =
Ts

σ

µ : = 0.25(1− δ) + 0.51δ.


(9)

Ts is the sampling interval, and σ and µ are parameters
about the rise-time and the damping index, respectively. The
reference output shape is changed by choosing σ and µ,
which is adjusted by δ. σ corresponding to the rise-time can
be set between 1/3 ∼ 1/2 of the time constant. Moreover,
the step shape is shown as Binomial model response when δ

is set to 0. and the response is shown as Butterworth model
response when δ = 1. If the desired output is determined in a
practical way, δ should be set to 0.0 throws 2.0. Furthermore,
these parameters need to be determined based on system
property.

In the proposed scheme, the parameters ai (i = 1, · · · , 4)
is adjusted so that the following relation is satisfied:

Gm(z−1)Φ(k) → y(k). (10)

And then, from equation (6) and equation (10), the relation-
ship can be obtained as follows:

y(k) → Gm(z−1)r(k). (11)

Therefore, the PID controller is designed as the system
output tracks the reference model output, In other words,
the control objective can be achieved. By optimizing the
following function, the relationship equation (11) can be
obtained:

J =
1

N

N∑
k=1

ε2(k) (12)

ε(k) = Gm(z−1)Φ(k)− y(k) (13)

where N is step number of the operating data, and these
equations are the generalized output errors. In order to min-
imize equation (12), for example, the optimization toolbox
in Matlab can be utilized.

Moreover, if a system has an unknown time-delay, the
time-delay can be estimated, and the corresponding PID
gains can be adjusted. When a time-delay system is con-
sidered, equation (13) of the evaluated function is replaced
as follows.

εd(k) = Gm(z−1)Φ(k − d)− y(k) (14)

where d is a time-delay of the system. In detail, the time-
delay is found by using the values of the evaluate function
with changing d.

Therefore, it is the concept of the proposed scheme, and
the proposed scheme can be designed PID controller to track
the reference model output.

III. SIMULATION EXAMPLE

To verify the effectiveness of the proposed scheme, the
following system is considered[11].

G(s) =
1

s3 + 2s2 + 6s+ 2
e−4s (15)

The system is discretized with Ts = 1.0 [s], the following
equation is given:

y(k) = 0.187y(k − 1) + 0.151y(k − 2)

+ 0.135y(k − 3) + 0.083u(k − d− 1)

+ 0.152u(k − d− 2) + 0.0289u(k − d− 3)

+ ξ(k) (16)

where ξ(k) denotes a Gaussian white noise with zero mean
and covariance 0.01, and the time-delay is given as d = 4.
Obviously, the operator does not know the true time-delay.
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First, the following PID gains are determined by the Chien,
Hrones and Reswick (CHR) method[3], and these gains are
employed,

KP = 1.5,KI = 0.3,KD = 3.0, (17)

when the reference signal is given as:

r(k) =

 2.0 (0 < k ≤ 100)
3.0 (100 < k ≤ 200)
4.0 (200 < k ≤ 300).

(18)

Then, the control result is shown in Fig. 1. The results is
adopted the operating data.
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Fig. 1. The control result when KP = 1.5, KI = 0.3, KD = 3.0 for a
time-delay system

Next, in order to employ the proposed scheme, the ref-
erence model is given by σ = 6.0 [s] and δ = 0.0, and
Gm(z−1) is designed as following equation:

Gm(z−1) =
0.08z−1

1− 1.43z−1 + 0.51z−2
. (19)

The proposed scheme computes PID gains by changing d
of equation (14), then Table I shows sets of PID gains and
the corresponding errors. According to Table I, the error is
smallest at d = 4, and this is the true time-delay. Thus, the
PID gains of d = 4 are employed the system, and the control
result is shown in Fig. 2,

Therefore, the time-delay can be estimated and whose
system is controlled as the desired control performance by
using the generalized output error even if a system has an
unknown time-delay.

IV. DESIGN OF A MULTIVARIABLE PID
CONTROLLER

A. The description of a multivariable system

For a step toward the practical use of the method, multi-
input/multi-output systems are considered, because most

TABLE I
PID GAINS AND THE ERROR BY EACH TIME-DELAY.

d KP KI KD
generalized output

error

1 4.065 0.753 10.000 0.350
2 2.492 0.496 6.083 0.236
3 1.647 0.362 3.516 0.027
4 1.152 0.286 1.729 0.019
5 0.851 0.241 0.429 0.030

6 0.781 0.227 0.301 0.052
7 0.698 0.218 0.001 0.152
8 0.554 0.185 0.001 0.821
9 0.506 0.162 0.001 2.021
10 0.524 0.144 0.001 3.587
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Fig. 2. The control result by using the proposed scheme for a time-delay
system

real systems are multivariate systems. Therefore, it is nec-
essary that the scheme is extended to multi-input/multi-
output(MIMO) cases. In addition, if systems are given as
MIMO, the influence of mutual interference between the
input and output need to be considered. Usually, in the
case of a controlled multivariable system such that the
interference, the system is controlled by a method based
on the modern control theory or a method by using a pre-
compensator. However, in order to use these methods, it
is necessary to identify the system parameters. Therefore,
the proposed scheme optimizes non-diagonal elements in the
PID gains matrix so as to solve the problem.

A multivariable control law is given by

u(k) = u(k − 1) +KP

{
y(k − 1)− y(k)

}
+KI

{
r(k)− y(k)

}
+KD

{
2y(k − 1)− y(k − 2)− y(k)

}
, (20)

where KP , KI and KD are the proportional gain matrix,
the integral gain matrix and derivative gain matrix, respec-
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tively. Each matrix is KP ∈ Rp×p, KI ∈ Rp×p and
KD ∈ Rp×p. u(k), y(k) and r(k) denote the control input
signal, the corresponding output signal and the reference
signal, respectively. They are given by p-dim vectors, which
are as follows:

u(k) = [ u1(k), u2(k), · · · , up(k) ]
T

y(k) = [ y1(k), y2(k), · · · , yp(k) ]
T

r(k) = [ r1(k), r2(k), · · · , rp(k) ]
T
.

 (21)

In addition, the mutual interference in multivariable system
is alleviated by non-diagonal elements in each gains matrix.

B. The design of the proposed multivariable PID controller

In the proposed scheme, the generalized output is de-
veloped so that the generalized output is equivalent to the
reference signal. Therefore, in multivariable systems, the
generalized output vector Φ(k) is defined as follows:

Φ(k) := C1ũ(k) +C2y(k)

+C3y(k − 1)

+(I −C2 −C3)y(k − 2) (22)

Φ(k) = [ Φ1(k), Φ2(k), · · · , Φp(k) ]
T . (23)

where ũ is given by the following equation.

ũ(k) = [ ∆u1(k) ∆u2(k) · · · ∆up(k) ]
T (24)

Moreover, Ci ∈ Rp×p (i = 1, 2, 3) are given by

C1 = K−1
I

C2 = K−1
I

(
KP +KI +KD

)
C3 = −K−1

I

(
KP + 2KD

)
.

 (25)

In the same way as section II, the parameter matrix
Ci(i = 1, 2, 3) of Φ(k) is optimized so that Gm(z−1)Φ(k)
becomes to equal to y(k). The reference model Gm(z−1)
are introduced as follows:

Gm(z−1) = diag
{
Gm1(z

−1), Gm2(z
−1),

· · · , Gmp(z
−1)

}
(26)

Gmj (z
−1) =

z−1P (1)

Pj(z−1)
(27)

Pj(z
−1) = 1 + p1jz

−1 + p2jz
−2 (28)

where p1j and p2j (j = 1, 2, · · · , p) are determined by

p1j = −2e
−

ρj
2µj cos(

√
4µj−1

2µj
ρj)

p2j = e
−

ρj
µj

ρj : =
Ts

σj

µj : = 0.25(1− δj) + 0.51δj .


(29)

σj is a parameter is related to the rise-time, and µj is the
damping index and it is adjusted by δj .

Therefore, to optimize Ci (i = 1, 2, 3), the following
evaluated function J is considered:

J =

p∑
j=1

λj

{ N∑
k=1

ε2j (k)

}
(30)

ε(k) = y(k)− ym(k) (31)

ε(k) = [ ε1(k), ε2(k), · · · , εp(k) ]
T (32)

where N is the step of an operating data. λj(j = 1, 2, · · · , p)
is the weight parameter for each controller. λj should be
designed according to operating conditions, to simplify λj =
1 in this paper. Moreover, Ci(i = 1, 2, 3) is calculated by a
suitable optimization algorithm as be a regular matrix.

If Ci is calculated, PID gains matrix can be obtained as
follows:

KP = C−1
1

(
2C2 +C3 − 2I

)
KI = C−1

1

KD = C−1
1

(
I −C2 −C3

)
.

 (33)

Therefore, the control system is constructed using obtained
PID gains matrix.

V. SIMULATION EXAMPLES BY THE PROPOSED
MULTIVARIABLE CONTROLLER

In order to verify the effectiveness of the proposed scheme,
some numerical examples are simulated. The following 2-
input/2-output system[12] is considered.

y(k) =

[
0.9 0
0 0.8

]
y(k − 1) +

[
0.2 0
0 0.1

]
y(k − 2)

+

[
0.6 0.5
0.4 0.8

]
u(k − 1) +

[
0.3 0.4
0.3 0.3

]
u(k − 2)

+ ξ(k) (34)

where ξ(k) is given by the following equation.

ξ(k) =
[
ξ1(k) ξ2(k)

]T (35)

ξj(k) (j = 1, 2) is a white gaussian noise with zero mean
and 0.01 variance. The reference signals are given as follows:

r1(k) =

 1.0 (0 ≤ k ≤ 200)
2.0 (200 < k ≤ 400)
0.5 (400 < k ≤ 600)

(36)

r2(k) =

 3.0 (0 ≤ k ≤ 250)
1.0 (250 < k ≤ 450)
2.0 (450 < k ≤ 600)

(37)

First, the following PID gains matrix are computed by the
CHR method, and these gains matrix are employed.

KP =

[
0.36 0
0 0.43

]
,KI =

[
0.21 0
0 0.12

]
,

KD =

[
0.14 0
0 0.17

]
(38)

The control results are shown in Fig. 3. From Fig. 3,
the outputs nearly track the reference signals although y1
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Fig. 3. Control result by using CHR method for 2-input/2-output system.

shows an overshoot. However, it is clear that each output is
influenced a great deal by each other.

Next, the proposed scheme is employed using operating
data about the control results in Fig. 3. The reference model
is designed by setting Ts = 1.0[s], σ1 = 3.0[s]，σ2 = 6.0[s]
and δ1 = δ2 = 0.0, and the following polynomial is obtained:

Gm1(z
−1) =

0.24z−1

1− 1.03z−1 + 0.26z−2
(39)

Gm2(z
−1) =

0.08z−1

1− 1.43z−1 + 0.51z−2
(40)

The weight parameter λj to each output is λ1 = λ2 =
1.00. The control result is shown in Fig. 4, and the computed
PID gains matrix are

KP =

[
0.20 0.68
−0.29 0.04

]
,KI =

[
0.70 −0.38
−0.64 0.50

]
,

KD =

[
1.21 −2.44
−0.89 1.26

]
(41)
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Fig. 4. Control result by using the proposed scheme when parameters are
set λ1 = λ2 = 1.00 for 2-input/2-output system.

By comparison of these results, it is clear that the proposed
scheme can be decoupled about y1 effectively.

Moreover, the effect of the weight parameter λj is consid-
ered. Then, the operating data is used results whose Fig. 3.
Fig. 5 shows the control result by using the proposed scheme
with λ1 = 1.00 and λ2 = 0.01.

As a result, when the weight of y1 is set to be large, the
interference of y1 can be suppressed more. By contrast, the
control performance of y2 becomes depleted.

Table II shows integral square errors about each output
computed by changing λj . Here, εj is error between the
reference output and the control output, and is defined by
the following equation.

εj = Gmj
(z−1)rj(k)− yj(k) (42)
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Fig. 5. Control result by using the proposed scheme when parameters are
set λ1 = 1.00 and λ2 = 0.01.

TABLE II
THE SUM OF SQUARED CONTROL ERROR CORRESPONDING TO THE

CHANGING λj .

λ
∫
ε1

∫
ε2

λ1 = 0.01, λ2 = 1.00 0.178 0.013
λ1 = 1.00, λ2 = 1.00 0.177 0.021
λ1 = 1.00, λ2 = 0.01 0.007 1.056

From Table II, it is clear that the proposed scheme obtain
better performance by changing a weight rate, so that λj

works properly. In particular, if operator sets to λj to match
the operating conditions and system, the desired output can
be obtained.

Therefore, the effectiveness of the proposed multivarible
PID controller is verified.

VI. CONCLUSIONS

In this chapter, a data-oriented PID control systems have
been proposed. First, the generalized output as key of the
proposed scheme was discussed. According to the proposed
scheme, the generalized output is defined from a discretized
the discrete-time PID controller, PID gains included in the
generalized output are adjusted by optimized so as to reduce
generalized output error using the operation data previously
obtained.

Secondly, the proposed scheme have been expanded to
multivariable systems because real processes often are use
multi-input/multi-output system. In the proposed scheme,
non-diagonal elements of PID gains matrix are computed
to reduce interferences while each input-output. Moreover,
by adjusting the weight λ, it is possible to obtain control
performance to match the operating conditions.

The behaviors of the proposed controllers are examined by
some numerical simulation examples, and the effectivenesses
are shown. In the future, in order to illustrate the usefulness
of the proposed scheme, the proposed controllers works in
real systems.
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