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Abstract— In recent years, many types of variable stiffness
devices are developed. These devices have an ability to change
the stiffness of a mechanical system. They can also store energy
thanks to elastic elements, and convert it to kinetic energy.
By installing these devices in the mechanical system, it is
expected that an actuator’s energy which is required to achieve
a periodic motion will be reduced. In this research, we realize
on-line stiffness optimization and on-line energy saving by
using variable stiffness device and adopting extremum seeking
control. Therefore, even if the target motion and parameters of
the plant are subject to change, the system can continue to work
with a little energy. It was shown by numerical simulation.

I. INTRODUCTION

These days, industrial robots are working in various situ-
ations. Thanks to these robots, people were delivered from
dangerous works and high production efficiency was realized.
But in order to operate them, large amount of energy is
required. So when it comes to running them for a long time,
energy consumption is immeasurable. Considering that more
and more industrial robots will be installed in the future,
this problem cannot be ignored. Therefore, the research on
working them with a little energy, that is “energy saving”,
has been actively carried out.

To realize energy saving, an energy conversion is consid-
ered as the solution. Specifically, if the mechanical system
has an ability to store potential energy and convert it into
kinetic energy for achieving the target motion, the actua-
tor’s energy consumption will be suppressed. For example,
pendulums convert gravitational potential energy into kinetic
energy and can continue to swing with no external force.
Passive dynamic walker [1], [2] is the robot which can
walk without actuators, because it owns the ability described
above. Furthermore, it is known that living things also
move in energy conservation by making use of tendons and
muscles.

Therefore, one method to achieve energy saving, using
variable stiffness devices is considered effective. Many types
of these devices have been developed, such as Antagonistic-
Controlled type, Structure-Controlled type, Mechanically-
Controlled type, and so on [3]. They are able to store energy
because elastic elements are installed in them. By adopting
this device, the mechanical system becomes possible to store
elastic(potential) energy and convert it into kinetic energy
for realizing the desired motion. They also have an ability to
change the stiffness of the controlled system. It means that
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they can regulate the natural frequency of the system. A com-
mon movement of industrial robots are repetitive motion, so
there exists frequency. When the natural frequency matches
the target motion’s frequency, the resonance phenomenon is
derived. If resonance is realized, the desired motion will
be achieved with a little energy of the actuator thanks to
the elastic energy [4]. Accordingly, it is expected that the
variable stiffness device will dramatically reduce energy
consumption of the mechanical system.

In this paper, energy saving realization by utilizing the
variable stiffness device is stated. The target motion is
periodic and composed of multi frequency components. In
the case of a single frequency motion, the optimal stiffness
value, which realizes the best energy efficiency, can be
calculated easily based on resonance theory. However, in
the case of multi frequency motion, the optimal stiffness
cannot be computed in a similar way. This time we define an
energy cost function, then calculate the stiffness value which
minimizes this. With this approach, the optimal stiffness in
the case of multi frequency motion can be defined [5].

Moreover, in this study, “extremum-seeking control” [6]
is applied to the controlled system. It allows the variable
stiffness device to optimize its stiffness on-line. Thus, even
when the target motion or parameters of plant are changed
depending on time, this controller is able to track the ideal
stiffness value and continue to save energy. It was shown by
numerical simulation.

The rest of this paper is structured as follows. In section
2, the controlled system is explained. The structure and the
theory of extremum seeking control is stated in section 3. An
optimal stiffness value based on the theory of extremum-
seeking is also calculated in this section. The numerical
simulations are presented in section 4 while the conclusion
and future work are discussed in section 5.

II. PROBLEM ESTABLISHMENT

A. Dynamics of Controlled System

The controlled system is a mechanical system as shown
in Fig. 1.

It has an variable stiffness device and one-degree-of-
freedom. Referring to Fig. 1, the motion equation of this
system is given as

mθ̈(t) + dθ̇(t) + khθ(t) = τ(t)− k(t)θ(t). (1)
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Fig. 1. Controlled System

In this paper, a desired motion θd(t) is assumed to be a
periodic motion with multi frequency components

θd(t) =

n∑
i=1

ai sin(iωt+ ψi). (2)

Each parameter of (1), (2) is described in Table 1.

TABLE I

DESCRIPTION OF THE PARAMETERS

m inertia of the mechanical system
d viscosity of the mechanical system
kh stiffness of the mechanical system
θ(t) position of the link
τ(t) motor torque
k(t) variable stiffness
n number of the component
ai amplitude of each component
ω angular frequency
ψi phase of each component

B. Control Objective

The control objective is to achieve the desired motion θd
with a little motor torque τ(t) by optimizing the variable
stiffness k(t). Which means energy saving. Furthermore, we
realize an on-line stiffness optimization by using extremum
seeking control.

III. PROPOSED METHOD

A. Extremum Seeking Control

Extremum seeking control has a structure as shown in Fig.
2. It adjusts the parameter to make the cost function J(k)
minimum or maximum value continuously. In this case, the
parameter is k(t).

B. Proof of Stability

Then, we state the stability of extremum seeking control.
At first, we posit the form of the cost function as

J(k) = f∗ +
f ′′

2
(k(t)− k∗)2. (3)

Where f∗ and k∗ represents the extremum of the cost
function J and the optimal value of the parameter k(t). When
f ′′ > 0(f ′′ < 0), J is a downwardly(upwardly) convex

 

Fig. 2. Schematic Diagram of The Proposed System

function.
From Fig. 2,

k(t) = a sinΩt+ k̂. (4)

When substituted into (3), gives

J(k) = f∗ +
f ′′

2
(a sinΩt+ k̂ − k∗)2

= f∗ +
f ′′

2
(a sinΩt− k̃)2. (k̃ = k∗ − k̂) (5)

Expanding this expression further, calculated as

J(k) = f∗ +
f ′′a2

2
sin2 Ωt− f ′′ak̃ sinΩt+

f ′′

2
k̃2

= f∗ +
f ′′a2

4
− f ′′a2

4
cos 2Ωt− f ′′ak̃ sinΩt+

f ′′

2
k̃2.

(6)

The high pass filter removes low frequency components

ϕ =
s

s+ h
[J(k)]

≈ −f
′′a2

4
cos 2Ωt− f ′′ak̃ sinΩt+

f ′′

2
k̃2. (7)

Then, ξ is given by

ξ = −f
′′a2

4
cos 2Ωt sinΩt− f ′′ak̃ sin2 Ωt+

f ′′

2
k̃2 sinΩt.

(8)
Applying the identity

cos 2Ωt sinΩt =
sin 3Ωt− sinΩt

2
.

(8) is calculated as

ξ = −f
′′a2

8
(sin 3Ωt− sinΩt)− f ′′a

2
k̃

+
f ′′a

2
k̃ cos 2Ωt+

f ′′

2
k̃2 sinΩt. (9)

There are two conditional expressions

k̂ =
γ

s
[ξ] ⇔ ˙̂

k = γξ. (10)

˙̃
k = k̇∗ − ˙̂

k = − ˙̂
k. (11)
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Considering these conditions and that the first, third, and
forth term of (9) are attenuated by an integrator, getting

˙̃
k = −γξ = γf ′′a

2
k̃. (k̃ = k∗ − k̂) (12)

Since γf ′′a < 0, this is a stable system. Thus, k̃ converges
to 0 as time passes. In terms of the original problem, k̂
converges to k∗, so k(t) is kept within a small distance of
k∗. As a result, the cost function converges to around their
extremum f∗.

C. Cost Function

Here, we discuss how to decide the cost function J(k) to
achieve energy saving. The mechanical system is powered
by DC motor shown in Fig. 3, so we assume the electric
power which is consumed by the motor per period. It can be
written by

W =

∫ t+T

t

v(t)i(t)dt. (13)

 

Fig. 3. DC Motor

Also, the following relational expressions are established.

v(t) = Li̇(t) +Ri(t) +KE θ̇(t). (14)

τ(t) = KT i(t). (15)

KT = KE (16)

τ(t) = mθ̈(t) + dθ̇(t) + khθ(t) + k(t)θ(t). (17)

Therefore,

v(t)i(t) = Li̇(t)i(t) +Ri(t)
2
+KT θ̇(t)i(t)

= Li̇(t)i(t) +Ri(t)
2
+ τ(t)θ̇(t)

= Li̇(t)i(t) +Ri(t)
2
+mθ̈(t)θ̇(t)

+ dθ̇(t)
2
+ (kh + k(t))θ(t)θ̇(t). (18)

Then, substitute a constant stiffness kc and the desired
motion θd(t) into k(t) and θ(t), (13) is calculated as

W = P (t+ T )− P (t) +R

∫ t+T

t

i(t)
2
dt+ d

∫ t+T

t

θ̇d(t)
2
dt

=
R

KT
2

∫ t+T

t

τ(t)2dt+ d

∫ t+T

t

θ̇d(t)
2
dt, (19)

where

P (t) =
1

2
Li(t)

2
+

1

2
mθ̇d(t)

2
+

1

2
(kh + kc)θd(t)

2
.

P (t+ T )− P (t) = 0.

The second term of (19) depends on the target motion and
the parameter of the mechanical system, so minimizing W

is equal to minimizing
∫ t+T

t
τ(t)2dt. Therefore, we select

J(k) =

∫ t+T

t

τ(t)
2
dt, (20)

as a cost function to maximize energy efficiency.

D. Optimal Stiffness

In this part, an optimal stiffness kopt is defined. The
optimal stiffness is the stiffness value which minimizes the
cost function J(k).

The needed torque to realize target motion is calculated
by substituting (2) and kc into (17)

τ(t) =
n∑

i=1

ai{−(mω2i2 − kh − kc) sin(iωt+ ψi)

+ dωi cos(iωt+ ψi)}. (21)

Then, the cost function J(kc) is given by

J(kc) =

∫ t+T

t

[
n∑

i=1

ai{−(mω2i2 − kh − kc) sin(iωt+ ψi)

+dωi cos(iωt+ ψi)}]2 dt.

=
T

2

n∑
i=1

a2i {(mω2i2 − kh − kc)
2 + d2ω2i2}. (22)

kopt is equal to kc which satisfies the following equation

∂J(kc)

∂kc
= −T

n∑
i=1

a2i (mω
2i2 − kh) + kcT

n∑
i=1

a2i

= 0. (23)

Accordingly, the optimal stiffness kopt is calculated as

kopt =

∑n
i=1 i

2a2i∑n
i=1 a

2
i

mω2 − kh. (24)

IV. SIMULATION

A. Condition

The simulation conditions are shown in Table 2.

TABLE II

SIMULATION CONDITIONS

time [s] desired motion θd [rad] m [kgm2]
¬ 0 ∼ 80 2.0 sin(2πt) + 1.2 sin(4πt+ 1.2π) 1.0
­ 80 ∼ 160 2.0 sin(2πt) + 1.2 sin(4πt+ 1.2π) 1.5
® 160 ∼ 240 1.2 sin(2πt) + 0.5 sin(4πt+ 0.7π) 1.5

The other parameters used in the simulation are indicated
in Table 3.
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TABLE III

VALUE OF THE PARAMETERS

d 0.1[Nms/rad]
kh 1.0[Nm/rad]
a 3
γ −0.22
h 14
Ω 15[rad/s]

B. Results

The simulation results are shown in Figs. 4 to 8. Fig.
4 shows the actual stiffness value k obtained through the
proposed method and the optimal stiffness kd calculated from
(9). From this figure, it can be seen that k converged to kd
by using extremum seeking control. Also, the link trajectory
θ almost converged to the desired motion θd as seen in Figs.
5 to 7. Fig. 8 shows the motor torque to achieve the target
motion. τd is the needed torque in the original system and τ
is the one in the proposed system, respectively. As you can
see, τ is smaller than τd.

 

0 40 80 120 160 200 240
0

20

40

60

80

100

120

140

time [s]

st
if

fn
es

s 
[N

m
/r

ad
]

 

 

k(t)

kopt

Fig. 4. kopt(blue) and k(red)
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The following table summarizes the energy consumption
of the DC motor in steady-state calculated from (13).

TABLE IV

ENERGY CONSUMPTION

condition original system [W] proposed system [W]
¬ 7.942× 105 2.808× 105

­ 18.03× 105 6.314× 105

® 3.626× 105 1.285× 105

According to this, we can understand that the power
consumption of the actuator is suppressed to about 36% by
optimizing the stiffness of the mechanical system.

V. CONCLUSIONS

In this paper, we realized energy saving of the mechanical
system by using the variable stiffness device. The device
have an ability to store energy and change the stiffness of
the controlled system. When the desired motion is a periodic,
the needed motor torque to achieve the motion is suppressed
by optimizing the stiffness of the system. It was shown by
numerical simulation.

In addition, we introduced “extremum seeking control”
into the system and realized on-line stiffness optimization.
So, even if the target motion or the parameters of the plant
are subject to change, the proposed system can continue to
save energy.

In future work, we will extend this method to the multi-
degree-of-freedom system which most industrial robots have.
Furthermore, we will improve extremum seeking control
because this system has a defect that it isn’t able to make
the parameter converge to the perfect optimal value. It only
keeps the parameter around the optimal value. So, we will
also consider eliminating this drawback.
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