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Abstract— In many industrial systems, the multivariable
system which has mutual interaction is often treated. Therefore,
decoupling the multivariable system is an important issue
to construct a control system. Although various decoupling
methods are proposed from the former, the present condition
is that industrial application is not carried out positively. In
such a background, the decoupling method in which an inverted
decoupler was used, attracts attention due to the handling being
easy as compared to the conventional method in recent years.
That design approach has a desirable design for the continuous
time system. However, from a practical viewpoint, the design
approach in a discrete time system is desirable. In this paper,
an inverted decoupler in a discrete-time system is constructed,
and the design method of the multiple loop PID controller to the
decoupling system is considered. Specifically, self-tuning control
system designing the inverted decoupler and PID controller at
the same time is constructed by identification one by one of the
system. The effectiveness of this proposed method is shown by
a numerical simulation.

I. INTRODUCTION

In the most industrial system, the multivariable system
with mutual interaction has to be dealt with. Therefore,
decoupling the multivariable system is one of the important
issue to design a control system. However, conventionally,
the present situation is not industrial application positively
despite the various decoupling methods have been proposed.
In recently years, decoupling methods using a inverted
decoupler[1], [2] has attracted attention since the handling is
simple as compared with the conventional method. However,
the design method is intended for continuous-time system,
design approach in discrete-time system is desirable from
a practical point of view. Consideration has not been such
inverted decoupler design method in discrete-time system.

On the other hand, there is not many at all that a property
for the controlled system is grasped enough beforehand when
a controlled system for a practical system is designed. As
the control method for such case, self-tuning control[3],
[4] was suggested, and various research papers have been
accomplished. However, self-tuning control tends to come to
have many control parameters by the order and time delay of
a controlled system, and the increase in number of the control
parameters becomes the factor to cause the deterioration
of transient properties of the controlled system. Therefore,
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in reference[6], by designing the control parameters based
on Generalized Minimum Variance Control(GMVC), and
replacing the control parameter with PID gain[5] approxi-
mately, the number of control parameters are decreased in
three parameters.

In this paper, the design method of the multiple loop PID
controller to the decoupling system is considered. Specifi-
cally, the inverted decoupler for a discrete-time system and
self-tuning PID control system is simultaneously designed
by identifying for a controlled system sequentially online.
This design method of PID controller is designed based
on GMVC. Furthermore, the effectiveness of this method
is verified by a numerical simulation.

II. DESIGN OF CONTROL SYSTEM

A. System Description

A control object is assumed to be described as followings.

A(z−1)y(t) = B̃(z−1)u(t) +
ξ(t)

∆
(1)

In equation (1), A(z−1) and B̃(z−1) are matrix polynomials
expressed with equation (2) and (3).

A(z−1) := diag
[
A1(z

−1), A2(z
−1), · · · , Ap(z

−1)
]

Ai(z
−1) := 1 + ai1z

−1 + ai2z
−2

(i = 1, 2, · · · , p)


(2)

B̃(z−1) :=

 B̃11(z
−1) · · · B̃1p(z

−1)
...

. . .
...

B̃p1(z
−1) · · · B̃pp(z

−1)


B̃jk(z

−1) := z−(djk+1)Bjk(z
−1)

Bjk(z
−1) := bjk,0 + bjk,1z

−1 + · · ·+ bjk,mz−m

(j = 1, 2, · · · , p, k = 1, 2, · · · , p)


(3)

Further, y(t), u(t) and ξ(t) denote the system output vector,
the control input vector and gaussian white noise vector, and
are defined by

y(t) := [y1(t), y2(t), · · · , yp(t)]T (4)

ξ(t) := [ξ1(t), ξ2(t), · · · , ξp(t)]T (5)

u(t) := [u1(t), u2(t), · · · , up(t)]
T (6)

In addition, z−1 is defined as a backward shift operator,
djk and m express time delay and a order of Bjk(z

−1) in
equation (3). At this time, the control object is the stable and
smallest phase system, values of m and djk is known.
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Fig. 1. Block diagram of control system

B. Design of Inverted Decoupler in Discrete-Time

The controlled system including the inverted decoupler is
shown in Fig.1, where, w(t), v(t), u(t) and y(t) are the
set value, the signal to the inverted decoupler, the control
input, the system output respectively. Furthermore, C(z−1)
and D(z−1) are respectively the controller and the inverted
decoupler.

First, in Fig.1, the control input u(t) can be express as
follows:

u(t) =
(
I +D(z−1)

)−1
v(t), (7)

where, I is an unit matrix of p × p. Next, the following
equation is provided by substituting equation (7) for equation
(1).

A(z−1)y(t) = B̃(z−1)
(
I +D(z−1)

)−1
v(t) +

ξ(t)

∆
(8)

Here, decoupling for the controlled system has to satisfy the
following conditions.

B̃diag = B̃(z−1)
(
I +D(z−1)

)−1
(9)

In addition B̃diag is expressed as follows:

B̃diag := diag
[
B̃11(z

−1), B̃22(z
−1), · · · , B̃pp(z

−1)
]
(10)

Therefore, the inverted decoupler D(z−1) is provided by the
following equation when equation (9) is solved.

D(z−1) =


0 B̃12(z

−1)

B̃11(z−1)
· · · B̃1p(z

−1)

B̃11(z−1)
B̃21(z

−1)

B̃22(z−1)
0 · · · B̃2p(z

−1)

B̃22(z−1)

...
...

. . .
...

B̃p1(z
−1)

B̃pp(z−1)

B̃p2(z
−1)

B̃pp(z−1)
· · · 0


(11)

C. Derivation of GMVC law

Control parameters are calculated based on GMVC. In this
subsection, GMVC law is shown as follows: First, by the
inverted decoupler provided by equation (11), the controlled
system of equation (1) is indicated by the following non-
interactive system.

Ai(z
−1)yi(t) = z−(dii+1)Bii(z

−1)ui(t) +
ξi(t)

∆
, (12)

where, i = 1, 2, · · · , p. Therefore, GMVC is applied for each
loop because system of equation (12) is a non-interactive

system. Next, for the system of equation (12), the control
law is derived to minimize the evaluation criterion shown as
follows:

Ji = E[ϕ2
i (t+ dii + 1)] (13)

However ϕi is the generalized output, and it is defined by

ϕi(t+ dii + 1) = Pi(1)wi(t)− Pi(z
−1)y(t) + λui(t) (14)

Here, λi indicates the weight for each input, wi(t) shows the
reference with piece constant for each output. In addition,
P (z−1) is the design polynomial[7] expressed by

Pi(z
−1) = 1 + pi,1z

−1 + pi,2z
−2

pi,1 := −2e
− ρi

2µi cos

(√
4µi−1
2µi

ρi

)
pi,2 := e

− ρi
µi

ρi := Ts/σi

µi := 0.25(1− δi) + 0.51δi


(15)

In equation (15), Ts, δi and σi respective indicate sampling
time, related to rise-time and dumping property.

However, when present time is assumed t, generalized
output, ϕi(t + dii + 1) is future value of dii + 1 step
ahead. Therefore, ϕi(t + dii + 1) cannot be obtained the
value in present time t. Accordingly, Diophantine equation
is introduced to be given in following equation to get dii+1
ahead point predict in generalized output ϕi(t).

Pi(z
−1) = ∆Ai(z

−1)Ei(z
−1) + z−(dii+1)Fi(z

−1), (16)

where, Ei(z
−1) and Fi(z

−1) are polynomials shown as
following equations.

Ei(z
−1) := 1 + ei,1z

−1 + ei,2z
−2 + · · ·+ ei,diiz

−dii

Fi(z
−1) := fi,0 + fi,1z

−1 + fi,2z
−2

}
(17)

Then, by equation (1), (14) and (16), the following relation
is obtained.

ϕi(t+ dii + 1|t) =Gi(z
−1)∆ui(t) + Fi(z

−1)yi(t)

− Pi(1)wi(t)

+ Ei(z
−1)ξi(t+ dii + 1) (18)

Here, ϕi(t+ dii+1|t) indicates value of dii+1 ahead point
predict in generalized output ϕi(t), and Gi(z

−1) is expressed
as follows:

Gi(z
−1) = Ei(z

−1)Bii(z
−1). (19)

From equation (13) and (18), the following equation is
provided.

Ji =E
[{
Gi(z

−1)∆ui(t) + Fi(z
−1)yi(t)

−Pi(1)wi(t) + Ei(z
−1)ξi(t+ dii + 1)

}2
]

(20)

As the result, the following control law is provided by taking
partial differentiation for Ji in ∆ui(t) so that equation (20)
is minimized.

∆ui(t) =
1

Gi(z−1) + λi

{
Pi(1)wi(t)− Fi(z

−1)yi(t)
}
(21)
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D. Replacement to PID gains

By the static gain Gi(1) given by replacing Gi(z
−1) in

equation (21), the following equation is obtained.

∆ui(t) =
1

Gi(1) + λi

{
Pi(1)wi(t)− Fi(z

−1)yi(t)
}

(22)

Then, proportion and differential precedence type PID con-
trol law is shown in following equation.

∆ui(t) = KIiei(t)−∆KPiyi(t)−∆2KDiiyi(t) (23)

Where, ei(t) is error of each loop and expressed as follows:

ei(t) = wi(t)− yi(t) (24)

Therefore, to compare the coefficients in (22) and (23), the
following relationship between the control parameters and
PID gains can be obtained.

KPi = −νi (fi,1 + 2fi,2) (25)

KIi = νi (fi,0 + fi,1 + fi,2) (26)

KPi = νifi,2 (27)

νi :=
1

Gi(1) + λi
(28)

E. Combination with the Self-Tuning Control

Based on inverted decoupler design method in II-B and
the control law in II-C, II-D, self-tuning control system is
designed such as figure 1. Specifically, the control system
which realizes desired control performance by using the
system parameters to be provided in self-tuning control for
not only the adjustment of the PID gains but also the design
of the inverted decoupler is designed.

III. SIMULATION

It is evaluated the effectiveness of the proposed method
using a numerical simulation. First, the controlled system
assume a 2-input/2-output system and describe the system
parameters as follows:

A1(z
−1) = 1− 0.95z−1 + 0.10z−2

A2(z
−1) = 1− 0.85z−1 + 0.09z−2

B̃11(z
−1) = 0.63z−4 + 0.31z−5

B̃21(z
−1) = 0.36z−5 + 0.28z−6

B̃12(z
−1) = 0.48z−5 + 0.40z−6

B̃22(z
−1) = 0.51z−4 + 0.31z−5


(29)

where, the sampling time Ts is set as 1.0[s], the mean and the
variance of the noise ξ(t) are 0 and 10−4. At this time, the
system parameters assume that they are known. Reference
values of both systems are switched over to 1.0 or 2.0 each
instant of time. In addition, to perform the estimate of the
system parameters exactly, the controlled system is inputed
irregular signals from control start (1[step]) until 10[step].

First, the result that designed self-tuning PID control
system for the controlled system without using a reverse
decoupler is shown in Fig.2 and Fig.3. Under the influence
of the mutual interference of the controlled system, it is
confirmed that the outputs cannot follow the reference values.
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Fig. 2. Output signals corresponding to control inputs shown in Fig.3
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Fig. 3. Control inputs of Fig.2

Each parameters used for the control system design is δ1 = 0,
δ2 = 0, σ1 = 20, σ2 = 15, λ1 = 0.01, λ2 = 0.01.

Next, the result that applied this proposed method is
shown in Fig.4, Fig.5 and Fig.6. Each parameters used for
the control system design is δ1 = 0, δ2 = 0, σ1 = 20,
σ2 = 15, λ1 = 0.01, λ2 = 0.01 as well as the result in
Fig.2 and Fig.3. From these results, a good control result to
follow the reference values although control performance is
inferior in several decades steps has been provided under the
influence of parameters estimate. The control inputs u(t) is
coordinated depending on a change of each reference values
to suppress the interference, because operation of added the
non-interference of the inverted decoupler in v(t) calculated
by a multi loop PID controller.

IV. CONCLUSIONS

In this paper, it is considered that the design method
multi loop self-tuning PID control system using the inverted
decoupler. In this method, The inverted decoupler and self-

332



0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

t[step]

y1

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

t[step]

y2

Fig. 4. Output signals corresponding to control inputs shown in Fig.5
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Fig. 5. Control inputs of Fig.4
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Fig. 6. Signal to inverted decoupler

tuning PID control system are designed at the same time

by identifying the system parameters one by one online,
and can be obtained desired control performance. Inverted
decoupler devised in continuous-time since conventional is
converted in discrete-time, PID controller is designed based
on GMVC. The effectiveness of this method is shown by a
numerical simulation. As for future work, a method deter-
mining suitable design parameters sigmai, δi and λi will be
considered, or applied for an unstable system, nonminimum
phase system, or experimental system.
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