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Abstract— Many complex systems containing fractal struc-
ture can be described by fractional order derivative. By ex-
pressing the complex system as fractional order system (system
containing fractional order derivative), system’s complex behav-
ior can be simply described with small number of parameters.
However, in order to control or identify such system containing
unknown variable parameters, online parameter estimation
mechanism targeting at the fractional order system is needed.
In this paper, we propose kreisselmeier adaptive observer
applicable to fractional order system, and we introduce the
projection algorithm method to proposed observer.

I. INTRODUCTION

Fractional calculus is the operation expanding the order
of differential and integral operation from integer to non-
integer order. By using fractional calculus, many complicated
dynamics like visco-erastic body’s responce or amorphous
semiconductor’s electric behavior can be described as the
simple system containing fractional order derivative (frac-
tional order system)[1],[2]. The system described as frac-
tional order system can express the plant’s behavior more
accurately by fewer parameters than the system treated as
integer order system whose order is simply increased. In
addition, the coefficient of fractional order derivative in the
fractional order system has many important information. In
the case of visco-erastic body, the coefficient of fractional
order derivative (s1/2) has the information about temperature
and state of molecules, and the plant’s behavior is influenced
by them. So, in order to obtain these information and control
the system dicribed by fractional calculus, adaptive observer
for such system is needed. In this study, we designed the
Kreisselmeier adaptive observer for the fractional calculus
system. Then, using proposed adaptive observer, we con-
structed state-feedback control system.

II. FRACTIONAL CALCULUS

A. Definition of Fractional order Caputo derivative

Fractional order Caputo derivative is given by

C
a Dq

t [ f (t)] =
∫ t

a

(t − τ)n−q−1

Γ(n−q)
dn f (τ)

dτn dτ (1)

where q is the order of the fractional derivative such that n−
1 < q < n, n is the integer, and Γ(·) is the gamma function,
which is the function expanding the factorial to arbitraly
order.we defined fractional derivative Dq as fractional order
Caputo derivative

(
Dq ≡ C

0D
q
t

)
.
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B. Approximation Method of Fractional Calculus

In the case of constructing the control system using the
fractional order transfer function, it requires a lot of time to
calculate the convolution from the initial time. For reducing
the time on calculation, Manabe proposed the approach to
approximate the fractional order transfer function to the
superposition of the integer order transfer functions on the
bode diagram around a specified frequency domain[3].We
used this approximation method to calculate the fractional
order derivative for the numerical simulation.The transfer
function of 1/sq at 1 < q < 2 can be approximated to

1
sq =

1
s
·Π j

i=1
s+ai

s+bi
·Π j

i=1
1+bis
1+ais

(2)

Ωlow < ω < Ωhigh (3)

where
δ = 20log10 α (4)

β = α− 2
(2−q)(q−1) (5)

a1 = α− 1
q−1 (6)

ai+1 = aiβ (7)

bi = aiα− 2
2−q (8)

Ωlow = α j+1 (9)

Ωhigh =
1

αk+1
(10)

Ωlow < ω < Ωhigh is the approximated frequency domain.
In the case of 1/sr at 0 < r < 1, the approximated transfer
function can be obtained by multiplying (2) by s. It becomes

1
sr =

1
sq · s = Π j

i=1
s+ai

s+bi
·Π j

i=1
1+bis
1+ais

(11)

where r = 1−q.

C. Solution, Stability, Controllability and Observability of
Fractional Calculus System

Considering the fractonal calculus system shown in fol-
lowing equations.

Dqx(t) = Ax(t)+Bu(t), x(0) = x0 (12)

y(t) = C�x(t) (13)

where q is the order of derivative.
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By using Mittag-Leffler function, solution of Eq. (12) can
be written as

x(t) = Eq,1(Atq)x(0)

+
∫ t

0
(t − τ)q−1Eq,q(A(t − τ)q)Bu(τ)dτ (14)

Eα,β (Az) =
∞

∑
k=0

(Az)k

Γ(kα +β )
(15)

Eα,β (Az) is Mittag-Leffler function. If α = 1, β = 1, E1,1(Az)
becomes

E1,1(Az) = eAz (16)

So, in the case q = 1, the solution of q order fractional
calculus system Eq. (14) becomes

x(t) = eAtx0

+
∫ t

0
eA(t−τ)Bu(τ)dτ (17)

Eq. (17) is the same solution as the solution of integer order
system.

As the stability, controllability and observability condition
of this system, following conditions are known[4],[5].

Lemma 1: Fractional order system described by Eqs. (12)
- (13) is stable if and only if

|arg(λi)| > qπ
2

, (i = 1,2, · · · ,n) (18)

where i (i = 1,2, · · · ,n) is eigenvalues of A.
Lemma 2: Fractional order system described by Eqs. (12)

- (13) is controllable if and only if

rankW = n (19)

W =
[

B AB · · · An−1B
]

(20)
Lemma 3: Fractional order system described by Eqs. (12)

- (13) is observable if and only if

rankN = n (21)

N =
[

C� (CA)� · · · (
CAn−1

)� ]�
(22)

III. ADAPTIVE OBSERVER

A. Design of Kreisselmeier Adaptive Observer

Single input single output (SISO) plant containing frac-
tional order derivative is given by

y(
n
m ) +

n

∑
j=1

α jy

(
n− j

m

)
=

n

∑
j=1

β ju

(
n− j

m

)
(23)

where α j and β j are unkown time-invariant parameters, u is
the input, y is the plant’s output. State space representation
of this plant can be described by following equations.

D
1
m x(t) = Ax(t)+Bu(t) (24)

y(t) = C�x(t) (25)

where 1/m is the order of the fractional derivative. For
the system expressed as Eq. (24) and Eq. (25), we make
following assumptions.
(A1) Plant is asymptotically stable.

(A2) Plant is a controllable and observable system.
(A3) The highest degree of the plant n/m is a known quantity.
From (A2), fractional order system can be transformed to the
observable canonical form.

D
1
m xO(t) = AOxO(t)+BOu(t) (26)

y(t) = CO
�xO(t) (27)

AO =

⎡
⎣ In−1

α
0

⎤
⎦ (28)

α� =
[ −α1 −α2 · · · −αn

]
(29)

BO
� = β� =

[
β1 β2 · · · βn

]
(30)

CO
� =

[
1 0 · · · 0

]
(31)

By introducing adequate vector f , the observable canonical
form of fractional order plant Eq. (26) - Eq. (31) can be
transformed to following equations.

D
1
m xO(t) = FxO(t)+(α − f )y(t)+βu(t) (32)

F =

⎡
⎣ g�

f
K

⎤
⎦ (33)

f� =
[

f1 f2 · · · fn
]

(34)

g� =
[

1 0 · · · 0
]

(35)

K =

⎡
⎢⎢⎢⎢⎣

0
... In−2
...
0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦ (36)

where f is given to make F stable. In order to design the
Kreisselmeier adaptive observer, we can rewrite Eq. (32) -
Eq. (36) by using following theorem.

Theorem 1: Fractional order system described by Eq. (32)
- Eq. (36) can be transformed to the following equations.

xO(t) =
∞

∑
j=0

F jt
1
m j

Γ
(

1
m j +1

)xO(0)

+Ry(t)(α − f )+Ru(t)β (37)

y(t) = z(t)+θ�ξ (t) (38)

where

D1/mRy(t) = FRy(t)+ Iny(t), Ry(0) = 0 (39)

D1/mRu(t) = FRu(t)+ Inu(t), Ru(0) = 0 (40)

ξy(t) = Ry
�(t)CO (41)

ξu(t) = Ru
�(t)CO (42)

D1/mξy(t) = F�ξy(t)+COy(t) (43)

D1/mξu(t) = F�ξu(t)+COu(t) (44)
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z(t) = C�
∞

∑
j=0

F jt
1
m j

Γ
(

1
m j +1

)x(0) (45)

θ� =
[

(α − f )� β�
]

(46)

ξ� =
[

ξy
� ξu

�
]

(47)
Proof: From the solution of fractional calculus system Eqs.
(14) - (15), the solution of Eq. (32) is expressed as follow.

x(t) = E 1
m ,1(Ft

1
m )x(0)

+
∫ t

0(t − τ)
1
m−1E 1

m , 1
m
(F(t − τ)

1
m )(α − f )y(τ)dτ

+
∫ t

0(t − τ)
1
m−1E 1

m , 1
m
(F(t − τ)

1
m )βu(τ)dτ (48)

The solution of Eq. (39) and Eq. (40) becomes

Ry(t) =
∫ t

0(t − τ)
1
m−1E 1

m , 1
m
(F(t − τ)

1
m )y(τ)dτ (49)

Ru(t) =
∫ t

0(t − τ)
1
m−1E 1

m , 1
m
(F(t − τ)

1
m )u(τ)dτ (50)

From Eqs. (49) - (50), Eq. (48) can be transformed to the
following equation.

x(t) = E 1
m ,1(Ft

1
m )x(0)

+ Ry(t)(α − f )+Ru(t)β (51)

Following equation can be obtained by multiplying Eq. (51)
by CO

�.

y(t) = C�
∞

∑
j=0

F jt
1
m j

Γ
(

1
m j +1

)x(0)

+ξy
�(t)(α − )+ξu

�(t)β (52)

From Eqs. (49) - (50), following equations can be obtained.

FRy(t) = Ry(t)F (53)

FRu(t) = Ru(t)F (54)

From Eqs. (53) - (54), D
1
m ξy

�(t) and D
1
m ξu

�(t) can be
calculated as follows.

ξy
( 1

m )(t) = Ry
�( 1

m )(t)CO

= (FRy(t)+ Iny)�CO

= F�(t)Ry
�(t)CO +COy(t)

= F�(t)ξy(t)+COy(t) (55)

ξu
( 1

m )(t) = Ru
�( 1

m )(t)C
= (FRu(t)+ Inu(t))�CO

= F�Ru
�(t)CO +COu(t)

= F�ξu(t)+COu(t) (56)

[Q. E. D.]
θ is the unknown parameter, so, by using estimated

parameter θ̂(t), we construct ŷ(t) as follow.

ŷ(t) = θ̂�
(t)ξ (t) (57)

θ̂�
(t) =

[
(α̂(t)− f )� β̂

�
(t)

]
(58)

where α̂ is estimated α parameter, and β̂ is estimated β
parameter. Then, e1(t) = ŷ(t)− y(t) can be described by the
following equations.

e1(t) = φ�(t)ξ (t)− z(t) (59)

φ�(t) = θ̂�
(t)−θ�

=
[

(α̂(t)−α)� (β̂ (t)−β )�
]

(60)

where φ is estimation error of plant parameters.
F is stable. Thus,

z(t) = 0 (t → ∞) (61)

e1(t) = φ�(t)ξ (t) (t → ∞) (62)

Then, it becomes e1(t) = 0(t → ∞) if adaptive control law is
given as

˙̂θi(t) = − γiξi(t)e1(t)

ν+ξ�
(t)ξ (t)

, (ν > 0,γi ≥ 0)

(i = 1,2, · · · ,2n)
(63)

If we give adequate input u(t) satisfying persistently exciting
condition, it becomes φ = 0 (t → 0). Then, proposed adaptive
observer can accomplish parameter identification and state
observation of fraction order system.

B. Projection Algorithm

Plant’s parameters θ is unknown. However, in the case the
range of θ is known a priori, adaptive observer can estimate
θ more efficiently by using ”Projection Algorithm.”

Projection Algorithm can be given as

˙̂θi = − γiξi(t)e1(t)

ν +ξ�(t)ξ (t)
(64)

(
θ̂i > θiu,ξi(t)e1(t) > 0 or θ̂i < θ̂ib,ξi(t)e1(t) < 0

)
˙̂θi = 0 (65)(

θ̂i > θ̂iu,ξi(t)e1(t) ≤ 0 or θ̂i < θ̂ib,ξi(t)e1(t) ≥ 0
)

By using Eqs. (64) - (65), Adaptive observer can estimate
plant’s parameters restricting the range of θ̂ to

[
θ̂ b, θ̂ u

]
.

IV. STATE-FEEDBACK CONTROL SYSTEM USING
ADAPTIVE OBSERVER

Considering the fractional order system described by Eqs.
(23) - (25) as controlled object, Eq. (24) can be transformed
to controllable canonical form expressed as following equa-
tions.

D
1
m xC(t) = ACxC(t)+BCu(t) (66)

AC =

⎡
⎢⎢⎢⎣

0
... In−1

0
−αn · · · · · · −α1

⎤
⎥⎥⎥⎦ (67)

BC
� =

[
0 · · · 0 1

]
(68)
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T =
[

t1� t2� · · · tn�
]

(69)

ti
� =

(
An−i +

n−1

∑
k=i

αkAn−k−1

)
B (70)

AC = T−1AT (71)

BC = T−1B (72)

xC = T−1x (73)

Then, control input u(t) can be given by

u = KC
�xC + r (74)

KC
� =

[
kC1 kC2 · · · kCn

]
(75)

From Eq. (66) and Eq. (74), state-feedback controlled system
can be described by

D
1
m xC(t) =

(
AC(t)+BCKC

�
)

xC(t)+BCr (76)

Characteristic polynomial of this closed-loop system be-
comes

n

∏
k=1

(s
1
m −λk) = s

n
m +

n

∑
k=1

(αk − kCk)s
n
m (77)

where λ1,λ2, · · · ,λn is the pole of the controlled system. We
can design the poles of closed-loop system by calculating
controller gain KC. To give the state-feedback controller for
the system described by Eq. (24), calculated controller gain
KC can be transformed, and control input u(t) is given by

u = K�x(t)+ r (78)

K = KCT−1 (79)

However, α j ( j = 1,2, · · · ,n) and β j ( j = 1,2, · · · ,n) are
unknown parameters. So, we calculate controller gain K̂ by
replacing α j, β j ( j = 1,2, · · · ,n) with estimated parameters
α̂ j, β̂ j ( j = 1,2, · · · ,n), and we give the control input u(t) as
follow.

u = K̂
�

x(t)+ r (80)

V. NUMERICAL SIMULATION

Fig. 1. System connected mass with visco-elastic body.

System connected the mass with visco-elastic body is
supposed as shown in Fig. 1. This system can be discribed
by

MD2[y(t)]+G1/2D1/2[y(t)]+G0y(t) = u(t) (81)

If M = 1, G1/2 = 1, G0 = 1, it becomes

D2[y(t)]+D1/2[y(t)]+ y(t) = u(t) (82)

The state space representation of Eq. (82) can be expressed
as follow.

D
1
2 x(t) = Ax(t)+Bu(t) (83)

y(t) = c�x(t) (84)

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
−1 0 0 1
−1 0 0 0

⎤
⎥⎥⎦ (85)

B� =
[

0 0 0 1
]

(86)

c� =
[

1 0 0 0
]

(87)

To show the effectiveness of proposed adaptive observer, we
designed adaptive observer for the system containing three
unknown parameters α3 = G1/2/M,α4 = G0/M,β4 = 1/M
discribed by Eqs. (83) - (87) and did the numerical simulation
in the case 1.
Case 1

x(0) = 0 (88)

φ�(0) =
[

0,0,−10,−10,0,0,0,10
]

(89)

u =
8

∑
j=1

sin
1+ j

5
t (90)

f� = [−4.9,−21.2,−13.0,−18.8] (91)

γi =
{

0, (i = 1,2,5,6,7)
5.0×104, (i = 3,4,8) (92)

ν = 1 (93)

Fig. 2 show the resalt of parameter identification where
η1 = (α̂3 −α3)/α3, η2 = (α̂4 −α4)/α4, η3 = (β̂4 −β4)/β4.
Figs. 3 to 6 are resalt of state observation. From Figs. 2 - 6,
effectiveness of proposed adaptive observer is shown.

However, by using projection algorithm, response of the
proposed adaptive observer can be improved. In this case,
the region of the θ can be estimated as

θi ≤ − fi, i = 1,2,3,4 (94)

0 ≤ θi, i = 5,6,7,8 (95)

It is because

αi ≥ 0, i = 1,2,3,4 (96)

βi ≥ 0, i = 1,2,3,4 (97)

To introduce the projection algorithm into the adaptive law,
we use Eqs. (64) - (65) and give θ̂ u and θ̂ b as follow.

θ̂ u =
[ − f ∞ ∞ ∞ ∞

]�
(98)

θ̂ b =
[ −∞ −∞ −∞ −∞ 0

]�
(99)

Figs. 7 - 11 show the result of numerical simulation of
proposed adaptive observer using projection algorithm. As
shown in Figs. 7 - 11, we can confirm the response of
adaptive observer can be improved by projection algorithm.

Next, to show the proposed state-feedback control sys-
tem using adaptive observer with projection algorithm, we
compared the responce of controlled system with system not
controlled by the numerical simulation in the case 2.
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Case 2

x(0) = 0 (100)

φ�(0) =
[

0,0, 1
2 ,−3,0,0,0,1

]
(101)

r =
8

∑
j=1

sin
1+ j

5
t (102)

f� = [−4.9,−21.2,−13.0,−18.8] (103)

γi =
{

0, (i = 1,2,5,6,7)
8.0×104, (i = 3,4,8) (104)

ν = 1 (105)

In this case, state-feedback gain of the controller was cal-
culated by Eqs. (66) - (80) as the poles of the closed-loop
system lie at λ1 = −1 + j, λ2 = −1− j, λ3 = −0.5 + 2 j,
λ4 = −0.5−2 j. Fig. 12 show the resalt of parameter identi-
fication. Figs. 13 to 16 are state of controlled system and not
controlled system. From Figs. 12 to 16, it is shown that pro-
posed control system can change dynamic characteristics of
fractional calculus system with identifying plant parameters.

VI. CONCLUSION

In this paper, Kreisselmeier adaptive observer using pro-
jection algorithm for continuous-time linear fractional calcu-
lus system and state-feedback control system using adaptive
observer was proposed. By numerical simulation, the effec-
tiveness of proposed adaptive observer and state-feedback
control system was shown. Using proposed adaptive control
system, fractional order system like visco-elastic body can
be control with identifying unknown plant parameters.
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Fig. 2. Estimation Error of Plant Palameters.

Fig. 3. Estimated y (y = x1).

Fig. 4. Estimated x2.

Fig. 5. Estimated x3.

Fig. 6. Estimated x4.
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Fig. 7. Estimation Error of Plant Palameters by Projection Algorithm.

Fig. 8. Estimated y (y = x1) by Projection Algorithm.

Fig. 9. Estimated x2 by Projection Algorithm.

Fig. 10. Estimated x3 by Projection Algorithm.

Fig. 11. Estimated x4 by Projection Algorithm.

Fig. 12. Estimation Error of Plant Palameters in Adaptive Control system.

Fig. 13. Controlled y (y = x1).

Fig. 14. Controlled x2.

Fig. 15. Controlled x3.

Fig. 16. Controlled x4.
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