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Abstract— The design of control architectures for large-scale
systems formed by the interconnection of several interacting
subsystems is a challenging task. The interactions between the
subsystems have a significant influence on the local control
decisions as well as the overall system optimality and need to
be accounted for explicitly. An increasingly popular technique
to control such systems is the Coordination-based Model
Predictive Control (C-MPC), where a decentralized control
architecture is maintained, but the performance of the system
is driven towards that of a centralized control architecture.
The C-MPC control strategy facilitates communication between
the local controllers and ensures cooperation in order to drive
the performance towards plant-wide optimality. However, the
amount of communication required increases exponentially with
the number of subsystems, making the C-MPC architecture
computationally inefficient. Hence, it is desirable to reduce
the computational load of the C-MPC architecture without
significantly compromising on the overall performance of the
system. In order to achieve this, a Genetic Algorithm (GA)
based optimizer is utilized to identify the trade-off between
communication topologies of varying complexities and the
associated performance of the C-MPC strategy. The effec-
tiveness of the optimally designed C-MPC framework with
partial communication between the controllers is evaluated on
a popular benchmark chemical engineering problem and the
performance is compared to that of the traditional centralized
and decentralized control architectures.

I. INTRODUCTION

The design of control systems for complex, networked
processes has always been a very challenging task [1]. Since
its advent in the second half of the twentieth century, model
predictive control (MPC) has evolved into one of the most
attractive and successful strategies to control such large-scale
integrated systems [2]. The increasing prominence of the
application of MPC is due to its suitability to multi-variable
constrained processes and the explicit exploitation of real-
time information and forecasts [3]. Two popular paradigms
for the implementation of MPC are the centralized and
decentralized control architectures. In a centralized MPC
architecture, a single monolithic controller is designed for
the entire system and it is based on a complete description of
the entire system with the assumption that the designed MPC
controller has access to all measurements. While such an
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architecture is plant-wide optimal, it is computationally in-
tensive; relatively difficult to implement, tune and maintain;
and is characterized by poor fault tolerance. On the other end
of the spectrum, a more practically implementable control
architecture is the decentralized MPC. In this architecture,
the large-scale system is divided into multiple subsystems
and an individual controller is designed for each of these
subsystems with access to only a local set of measurements.
Though such a control system is flexible, reliable and easy
to implement, it leads to solutions that are not plant-wide
optimum and often the stability of such an architecture is
not guaranteed [4]. The centralized and decentralized control
paradigms define the limiting extremes of controller design.
The escalating importance of the economic efficiency of
systems has necessitated the need for control architectures
that address the shortcomings of both the traditional con-
trol paradigms. Over the last few years, researchers have
focused on developing control architectures that combine the
advantages of both the centralized and decentralized control
schemes while simultaneously addressing their drawbacks
[5]. This has resulted in the development of coordinated
control architectures, where a decentralized topology is
maintained and the performance of the individual controllers
are driven towards plant-wide optimality via the utilization
of a coordinator and has popularly been referred to as the
coordination-based MPC (C-MPC) architecture [6], [7].
The loss in performance of the decentralized architecture
is attributed to the loss in information caused by the de-
centralization when individual independent controllers are
designed for local subsystems and the subsystem interactions
are either completely or partially ignored. Most large-scale
systems are characterized by a large number of complex and
strongly interacting subsystems and these interactions have
a significant influence both on the local control decisions as
well as the overall plant-wide optimality. In most systems,
neglecting these interactions or inadequately coordinating the
subsystems, leads to suboptimal system performance and in
extreme cases the stability of the system is compromised.
The C-MPC architecture aims at explicitly accounting for the
interaction effects that exist between the different subsystems
of the complex large-scale process. The quantification and
utilization of the interaction effects and models form the
core of the C-MPC architecture design [8]. The coordinator
enables the exchange of information such as states, predicted
output trajectory information and calculated control action
at each time step between the local controllers, to decide
the best set of control actions for each individual controller.
Also, the coordinator modifies the local models and cost



functions utilized by the individual controllers to a well-
defined common structure that enables communication and
cooperation between the individual controllers [9].

There have been a few studies on C-MPC strategies
originating from different schools of thought and in the
last few years there have been few comprehensive com-
parisons between the various C-MPC strategies [10], [11].
However, most of the literature on C-MPC has been derived
based on the assumption that all subsystem interactions are
equally important. A coordinator designed in such a manner
is computationally very intensive and can coordinate the
individual MPCs only when information from every one of
the subsystems is available. There have been a few studies
recently on the optimization of the system topology based
on process knowledge and heuristics derived from the expert
knowledge of plant operators [12]. However, there is a dearth
of literature on the design of MPC coordinators that prioritize
the various interactions and coordinates the individual MPCs
based on the relative significance of interactions. Such a
strategy, though not plant-wide optimal, will be able to lead
to near plant-wide optimal performance with a significantly
lesser computational burden. The need of the hour is to
design C-MPC algorithms with minimum information ex-
change between the local controllers such that the degree
of decentralization is maximized while at the same time the
performance degradation is minimized [13]. In this sense, the
controller topology (interaction structure) is first optimized
and then the local controllers are selectively coordinated. In
order to identify the most advantageous controller topology
we have utilized a genetic algorithm (GA) based optimizer
[14]. A multi-objective optimization problem is formulated
to maximize the degree of decentralization (minimize in-
formation exchange between controllers) and minimize the
performance degradation. The GA optimization results in
various optimal controller topologies with varying degrees
of decentralization. Based on the desired computational im-
provement, within the permissible performance deterioration,
the preferred controller topology with minimum information
exchange can be utilized.

This paper presents a novel C-MPC framework with an
optimized communication topology. We have selected and
extended MPC coordination technique from literature and
optimized the controller topology before implementing the
C-MPC strategy. This novel GA based topology optimization
strategy has been evaluated on a popular benchmark chemical
engineering case study. In the next section, the C-MPC algo-
rithm is briefly formulated and the communication bottleneck
is highlighted. In the subsequent section, the formulation
of the controller architecture with optimal communication
topology is described in detail. These form the method-
ological framework that is employed in the subsequent case
study described in the next section. The key conclusion and
empirical evaluations derived from this work are summarized
in last section.
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II. COORDINATING MULTIPLE MODEL
PREDICTIVE CONTROLLERS

The initial formulations of C-MPC were based on the
assumption that exchanging information (in the form of
predicted state trajectories and calculated control trajectories)
were sufficient to drive the performance of decentralized
controllers towards plant-wide optimality. However, it was
later proved that exchange of information was insufficient to
guarantee system stability and in systems where the interac-
tions were severe, such a strategy would lead to competing
controllers that do not converge to a unique solution [15].
In order to overcome this deficiency it was shown that a C-
MPC scheme needed to enable the cooperation among the
local controllers over and above the communication network.
These observations formed the basis for most of the C-MPC
schemes that have been formulated in the recent past [16].

As mentioned in the previous section, the main task of
the coordinator is to predict the effect of the interactions
between subsystems and to enable the local controllers to
modify the local decisions to balance out the interaction
effects. In order to achieve this, the C-MPC strategy aims
at enabling communication (exchange of states, predicted
output trajectory and calculated control action at each time
step) and cooperation (through a modified local objective)
between the controllers.

Consider a large-scale MIMO system comprised of M
individual subsystems. The discrete transfer function matrix
formulation of the system, where j denotes the output
variable vector and & denotes the manipulated variable vector
and d denotes the measured disturbance vector is as follows:

§=Gpii+Gyd (1)

where Gp is the process transfer function matrix and G,
is the disturbance transfer function matrix.

For large-scale system Gp is defined as,

Gii(z) Gl Gim(2)

) Gxn(z) Gn(z) Gom(2)

G, = . . . )
G G . . Guul2)

In the process transfer function matrix Gp, the off-diagonal
transfer functions represent the interaction models in the sys-
tem. For example, the interaction model G;;(z) is a transfer
function model between the input to the i-th subsystem and
the output of the j-th subsystem. In a decentralized control
architecture, G, would be a diagonal matrix with G;;(z) = 0.

The prediction equation for the i-th subsystem will then
take the form:

Yi(t) = GiAu;(t) + hi(t) + Li(2) 3)
where,
M
hi(t) =Y. GijhAuj(t) 4)
j=1
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h;(t) denotes the effect of future inputs of other subsystems
on the i-th subsystem output.

M
li(t) =Y. Fyjxj(1) + Faixai(t) 4 Yiu (1) o)
=1

In the above equation, /;(¢) is obtained by summing up the
effect of past inputs of all M subsystems (first term), effect of
measured disturbances (second term) and current measure-
ments (third term). The prediction equation 3 forms the basis
of all control calculations. Generally, the control algorithms
for these subsystems are implemented independently in an
iterative manner. Since an MPC optimization scheme is being
employed, trajectories for the input variables are available
at each iteration and this information is exchanged between
the subsystem controllers. Through the modified prediction
equation (eq. 3), each local MPC is now able to compute
the effect of the control decisions calculated by each of the
other local controllers over the prediction horizon.

Each MPC transmits the current state and input trajectory
information to all interconnected subsystem’s MPC through
the coordinator. However, each individual controller has no
knowledge of the cost functions of other local controllers.
The objectives of each MPC controller are frequently in con-
flict and the equilibrium of such a strategy is driven to a non
cooperative Nash equilibrium. Due to the non-cooperative
and competing nature of such a strategy, the overall system
performance is usually suboptimal and when interactions are
strong, closed loop stability is not guaranteed.

Despite having knowledge of the local control decisions,
the individual controllers try to achieve their own individual
optima and hence do not converge to a global optima. In
other words, the controllers are working with the same
resources (control variables) but towards satisfying different
conflicting objectives leading to a contest between the indi-
vidual controllers. To overcome this competition between the
controllers, the coordinator additionally works towards en-
abling the controllers to support each other towards reaching
global optimality. In order achieve this, the local objective
functions of each subsystem MPC controller are converted
to a common global objective function. This is achieved by
using a weighted convex sum of the individual objective
functions as the new objective function.

For each subsystem i, the cost function F; to be minimized
by the local MPC is hence written as:

M
F= Z widr(Au;) (6)
r=1
M
Y ow =1 @)
r=1
M
F, = W,‘Ji(Aui) + Z WrJr(A”i) ®)
r=1
r#i

Here the cost function J; for the i-th subsystem is of the
form,
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Ji = (Rs—Y))" Qi(Rs = Y) + Auj RiAu; 9

where Rg is a vector of the individual subsystem set points,
Q; and R; are tunable weights selected depending on the
system dynamics.

Weights w, and w; are assigned to the various objectives
heuristically based on the physical or economic significance
of the variables being optimized/controlled at each sub-
system. Subsystems or output variables that have a more
significant effect on the overall plant operations as designated
by the process engineer would be weighed more significantly
than the others. In our studies, we have weighed all objectives
equally in the cooperation based coordination strategy. Since
all the local MPC controllers are solving an optimization
problem with a common global objective function, the
optimal control profile generated at all iterates of the C-
MPC scheme is now plant-wide feasible and closed loop
stable (Pareto Optimal). The weights used while coordinating
the local MPCs would be the same as the weights used
by a centralized MPC (single objective) hence allowing
the performance of the C-MPC scheme to converge to the
performance of a centralized MPC. While different weights
would alter the actual performance, the convergence of the C-
MPC scheme to a centralized MPC performance still holds.

The input rate, input and output constraints for the i-th
subsystem are written in the form:

AuN < Auy < Aum™ (10a)
Ui < gy < (10b)
T <y <y (10c)

for,i=1,2,....,. M

Each individual MPC utilizes a suitable optimization algo-
rithm (Quadratic Programming in our work) to minimize the
cost function defined by Eq. (9) subject to the constraints de-
fined by equation Eq. (10). Every local MPC, then iteratively
exchanges information with the other MPCs and re-optimizes
the control decision until convergence or a predefined limit.
The reader is referred to Anand et al. [11] for a more detailed
derivation of the above described C-MPC strategy and the
effect of model-plant mismatch on the C-MPC performance.

The performance of the C-MPC algorithm is quantified
through analyzing the deviations from set point and the sum
of squared errors (SSE) is selected metric. The Total SSE
which is the sum of the SSE’s of all response variables is
given as:

M
SSE =Y (Y;—R)? (1)
=1

l
Most formulations of coordinated and distributed control
strategies in literature are hinged on the assumption that
every controller communicates with every other controller.
The number of interactions increases polynomially (O(n?))
with the number of subsystems and the number of possible
communication topologies increases exponenetially (0(2"2)



with the number of subsystems. This creates a tremendous
load on the communication network impeding its robust-
ness. Methods to reduce the computational load through
algorithms that permit only partial communication is the
direction in which current research is progressing and a few
methods that try to tackle this issue have been researched
in recent literature [17]. In this work, we have analyzed
a simulation-based optimization methodology to reduce the
communication load without compromising significantly on
the overall system performance or the closed-loop stability
and we have designed a framework to achieve the same.

III. OPTIMIZING THE COMMUNICATION
TOPOLOGY

The problem of simultaneously designing both the con-
troller topology and the controller itself has been introduced
very recently and is one of the main contributions of this
research. In this work, we have first designed the C-MPC
control strategy with complete information exchange (as de-
scribed in the previous section) and then we have optimized
the controller topology within the C-MPC architecture. In
this section, we formulate the problem of minimizing the
information exchange and optimizing the topology of the C-
MPC architecture. This problem mathematically translates
into maximizing the sparsity of G,, (defined in eq. 2) which

in turn increases the degree of decentralization which is
quantified through an Interaction Matrix.
The Interaction Matrix is defined as,
imyp o imip imim
imy;  impy imay
IM = (12)
imy impp imym

where

im;; = 0, if interaction model G;; is ignored
im;; = 1, if interaction model G;; is utilized

and the interaction index (II) of the control topology is

defined as:
M M
n=yYy im;
i=1j=1

(13)

It is desired to minimize the number of interaction models
used in the control architecture. However, as the number of
interaction models are reduced, the system performance also
deteriorates due to the reduction in information, which is
undesired, and hence a multi-objective optimization (MOO)
problem is formulated. In this case we have two conflicting
objectives, the number of interaction models and the perfor-
mance deterioration of the system.

Traditionally, multi-objective optimization problems are
solved using the min-max formulation, method of distance
functions or the method of weighted objectives [18] where
the multiple objectives are converted into a single objective.
The greatest drawback of this method is the resulting single
solution rather than a catalog of equally optimal solution
set. Also, the conversion of multiple objectives into a single
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objectives depends on an a priori requirement of system
knowledge. Moreover, these methods involve weighing of
objectives, and the tuning of these weights play a signifi-
cant role in the overall optimality of the solutions. These
shortcomings render the single-objective formulation based
methods inadequate and unreliable. In order to provide a
more pragmatic set of solutions that enable the decision
maker to choose the most appropriate decision based on
his current requirements, algorithms that explicitly handle
multiple objectives were required. There are many methods
that solve MOO problems and result in a set of solutions
known as pareto optimal solutions. Each of these solutions
in the pareto optimal set is better than every other solution
in the search space when all the objectives are considered
together (though they are inferior to the solutions when one
or a few objectives only are considered). Many methods have
been developed to find Pareto optimal solutions to MOO
problems such as the weighted sum method, €-constraint
method, evolutionary algorithms [19], etc. In this work,
we have utilized a multi-objective evolutionary algorithm
in the form of the non-dominated sorting genetic algorithm
(NSGA-II) implemented in MATLAB. As described in [20]
this particular algorithm performs better than other MOO
algorithms (Pareto-archived evolution strategy (PAES) and
strength Pareto evolutionary algorithm (SPEA)), in terms of
elitism and computational complexity.

The first step of the NSGA-II algorithm is to define
the population size and the stopping criteria (in this case
the number of generations was constrained). Next, within
the constraints of the decision variables, a random initial
population is defined. The initialized population is sorted
into different fronts, based on the non-domination criteria.
From the initial population, parents are selected based on two
metrics namely rank and crowding distance. The members
of the first front belong completely to the non-dominated set
while the second front members are dominated only by the
first front and so on. Each individual of the population is
assigned a rank (fitness) based on the their presence in a
particular front. Crowding distance is a metric that measures
the closeness of the individuals to their neighbors and a larger
crowding distance is preferred to ensure diversity within the
population. Individuals are selected as parents based on the
rank value and crowding distance. The parent population then
undergoes genetic operations such as crossover and mutation
to generate the next generation of the population known
as children. The children population is then combined with
the current parent population in a step called recombination.
These steps are repeated iteratively till the stopping criteria
are achieved. Elitism of the algorithm is assured, since
the best individuals from both the previous and current
population are utilized. The parameters involved in setting up
the NSGA-II algorithm are the number of generations and
the probabilities for the crossover and mutation processes.
One of the challenges associated with this algorithm is
the decision of the initial population size and maximum
permissible number of iterations. Though a larger population
and number of iterations are preferred, they significantly



increase the computational cost and need to be limited yet
sufficient. In order to select these parameters efficiently,
preliminary simulations were performed to assess their effect
and optimize them. In this work, a modified version of
the program developed at the Illinois Genetic Algorithms
Laboratory [21] was used and the parameters used in the
setting up of the NSGA-II algorithm are specified in Table
L.

TABLE I
NSGA PARAMETERS

[ Parameter [
Objective 1
Objective 2
Constraints

Replacement Proportion

Selection Method
Crossover Method
Crossover Probability 0.9
Mutation Method Selective Mutation
Mutation Probaility 0.1
Stopping Criteria Maximum Generations
Population Size 36
Maximum Generations 200

Value |
Minimize the SSE
Minimize the IT
Binary Decision Variables
0.9
Roulette Wheel
One Point Crossover

IV. CASE STUDY: SHELL BENCHMARK PROBLEM

The Shell benchmark problem was originally designed as
a generic benchmark for control studies by Prett et al. [22].
It is model of a heavy oil fractionator characterized by three
side circulating loops and three product draws. The output
variables are the compositions at the top and side draws and
the reflux temperature while the manipulated variables are
the top and side draw rates and also the reflux heat duty.
The main objective of this control problem is to maintain
the draw compositions at a desired setpoint. In this work,
the model presented by Li et al. [23] has been utilized.

The model of the process is: y = G(s)u+ G4(s)d with the
transfer function matrices:

4.05¢727s  1.77¢7285  5.88¢27s
S0s+1 60s+1, 5051
_ | 5397185 572714 6.90¢ 15
G(s) = 5051 60511 40571 and
4.38¢720s 4400722 7.20
335+1 44511 19s+1
1.44¢~%7s
4Os+115
— 1.83¢ %
Ga(s) 20511
1.26
32s+1

The constraints include, |y;] <0.5, |u;| <0.5, |Au;| < 0.5 for
i=1,2,3

The interactions are quantified using the relative
ain array (RGA). The RGA for the system is
2.0757 —0.7289 —0.3468
34242 0.9343 —3.3585
—4.4999 0.7946  4.7053

The presence of significant off-diagonal terms indicates
the existence of subsystem interactions that exist in the
system. The simulation results (Fig. 1), indicated that the
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effect of these interactions were strong and though the decen-
tralized control strategy (O interactions) yielded a closed loop
stable solution, its performance was significantly degraded as
compared to the centralized controller performance (6 inter-
actions). In order to assess the effectiveness of the C-MPC
control architecture, the GA algorithm was implemented and
the 6 interaction models (decision variables) were optimized
while configuring the communication topologies.

A. Results and Discussion

Model based controllers based on transfer function mod-
els were derived and implemented in MATLAB version
7.11.0.584 and a tuning strategy derived by Shridhar et al.
[24] was used to tune the individual multivariable MPCs.
In order to assess the robustness of the developed control
algorithm, set point changes as well as step disturbances
were introduced to all the subsystems at different sampling
instants. The results as seen in Fig. 1, highlight the utility
of the GA optimization algorithm in selecting communi-
cation architectures with varying topologies of different
complexities. While the top panel of the figure depicts the
performance of the controller while utilizing a different
number of interaction models, the lower panel shows the
corresponding optimal interaction models that were selected
to achieve the depicted performance. The C-MPC scheme
is applicable to systems where a decentralized MPC is
feasible. The decentralized MPC by itself can be considered
as an C-MPC scheme where zero interactions are accounted
for. Hence, even if a single interaction is included in the
coordination scheme the performance of the system improves
and it is seen that including a single interaction model
(imy3), if selected optimally can improve the decentralized
performance by nearly 50% as seen in Table II. Also, it
is seen that, by increasing the number of interactions, the
performance improves (SSE decreases) and asymptotically
converges to the performance of a centralized controller (a
theoretical benchmark). Through utilizing the GA optimiza-
tion algorithm, the importance of the individual interactions
as well as the selection of an optimal control topology with
limited communication (as desired by plant operators) can
be achieved.

TABLE II
PERFORMANCE COMPARISON OF THE VARIOUS OPTIMAL CONTROL
TOPOLOGIES FOR THE SHELL BENCHMARK PROBLEM

[ No. of Interactions | SSE with respect to Decentralized MPC |

Decentralized MPC 1.00
1 0.53

2 0.42

3 0.34

4 0.29

5 0.24

6 0.17
Centralized MPC 0.16

When more interaction models are included in the control
topology, the required computational time would also in-
creases. The increase in computational time can be attributed
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Fig. 1. Performance comparison of the shell benchmark problem for various
optimal interaction topologies (im3; = 1)

to the increase in communication and the exchange of infor-
mation between a larger number of controllers. However,
the results of this work would provide the control prac-
tioners with a trade-off option between desired performance
improvement and available computational resources. For
example, if the time constraints permit only the selection
of 3 interaction models, then the models im;3, im3; and im3;
need to selected and a performance enhancement of 65.6%
can be achieved. Conversely, if a performance enhancement
of 50% is sufficient, only 2 interaction models (im;3 and
im31) need to be utilized.

V. CONCLUSIONS

The novel GA based communication topology optimiza-
tion and the implementation of the partial communication
based C-MPC controller scheme presented in this work has
been shown to significantly alleviate the bottleneck in tradi-
tional coordinated control architectures. It has been shown
that the demands of enabling communication between each
and every local MPC can be lessened through optimizing the
communication network and utilizing only those interaction
models that significantly improve the overall performance of
the system. It was seen that a performance improvement of
over 50% can be achieved by optimally selecting only a few
interaction models. However, the selection of the interaction
models needs to be optimized in order to ensure maxi-
mum performance enhancement. The algorithm developed
in this work has been used to prioritize the interactions and
configure communication topologies of varying complexities
successfully. The set of pareto optimal solutions provided
by the GA optimizer provides additional flexibility to the
control practioners. The GA based communication topology
optimization of the C-MPC architectures has shown to im-
prove the closed loop performances significantly over the
decentralized control strategies. The results of this work will
be extended to the optimal design of control architectures
for large-scale systems after rigorous analyses and studies
on the effect of model-plant mismatch on the optimized

323

communication network.
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