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Control system with biochemical reaction network and its application to
molecular robotics*
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Abstract—In this paper, we consider how to realize a PID
controller and a signal transmission system in a biochemical
reaction network, which are fundamental issues in a design of
molecular robot. Since a negative feedback is implemented with
an inhibition reaction in an intracellular signal transduction
system instead of a negative gain or an error signal, some
fundamental properties of the closed loop system such as equi-
librium state and oscillation are different from a mechatronics
system. We show that the input signal to a biochemical network
has two aspects, the main signal to be transmitted and a noise
to be rejected. Next, we computationally analyze an example
model to clarify the effect of negative feedback control in a case
study, calculating the input to output properties with various
kinds of input signals. Then, we demonstrate that an example
model is a possible candidate for a PID controller and a signal
transmission system in molecular robot.

I. INTRODUCTION

Cellular processes such as proliferation, differentiation and
apoptosis are rigorously controlled by intracellular signal
transduction systems that are biochemical reaction networks
with proteins and genes [1]. An extracellular stimulus as
a reference input is transmitted toward target genes by
means of chains of activations of signaling proteins in signal
transduction pathways in which the information in the flow is
a concentration change of an activated protein. It is amazing
that the information-communication system is reasonably
reliable and robust against environmental change and dis-
turbances in a cell. Recently, technology for controlling a
biochemical actuator based on a sensor signal that is also a
physical value of a molecule is needed to realize a motion
control of molecular robot [2].

It has been well known that a signal transduction system in
a cell is regulated by feedback control [3], [4], [1] in which a
positive and a negative regulation provide a switch-like func-
tion and an enhancement of robustness, respectively This fact
motivates researchers involving in control theories to perform
a model-based analysis aiming for a better understanding of
a complicated signal transduction pathways [5], [21], [6],
[7], [8], [9]. These studies mainly focus on elucidating the
mechanisms of a control system to contribute a development
of a better drug for diseases such as tumors. On the other
hand, there are few studies to design and implement a control
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system in an artificial biochemical reaction network that is
an essential technology for molecular robotics.

In this paper, we consider how to realize a PID controller
and a signal transmission system in a biochemical reaction
network for molecular robotics. To this end, we begin with a
discussion regarding functions of negative feedback control
comparing with one in an engineering system. Since a
negative feedback is implemented with an inhibition reaction
in a signal transduction system instead of a negative gain or
an error signal in mechatronics, some fundamental properties
of the closed loop system such as equilibrium state and
oscillation are investigated. Next, we analyze an example
model in [21] to clarify the effect of negative feedback
control in a case study. Since the model is highly nonlinear
and it is difficult to analytically evaluate the model, we
calculate the input to output properties by applying various
kinds of input signal. Then, we demonstrate that the model
is a possible candidate for a PID controller and a signal
transmission system in molecular robot.

The subsequent sections are organized as follows. In the
section II we discuss about functions of a negative feedback
control in a biochemical reaction network and provide some
basic results on system properties of the closed loop system.
In the section III, we address a case study with an example
model to investigate what information is transmitted in the
signal transduction system and how we can utilize the system
as a controller or a signal transmission. Then, we provide
some discussions with the results in the section IV. Finally,
we mention some conclusions.

II. B10-TYPE NEGATIVE FEEDBACK

In the typical control theory for engineering systems,
negative feedback is a control action with a minus feedback
gain to stabilize a plant of interest or an error signal between
a reference and an output signal, which is executable in prac-
tical applications since both a positive and a negative control
values have physical meanings such as clockwise and anti-
clockwise torques. On the other hand, signals in biochemical
reaction networks are concentrations of activated proteins or
expressed genes, and only positive values are available in the
system, which implies that a negative feedback regulation
in a biochemical reaction network should be realized by a
different kind of operation without negative values (we call
the operation by “’bio-type” negative feedback in this paper).

In molecular cell biology, it is well known that negative
feedback is an important motif in a signal transduction
pathway, which is a control system for regulating signal
transduction in a cell comprised of biochemical reactions, to



regulate an information flow [1], [10], and is accomplished
by inhibition of an activator or enhancement of a deactivator
in the pathways [11], [12]. Although there are some kinds of
formulations for the negative feedback regulation, a typical
description (e.g. [13], [14]) is defined by the following type
of equations

#(t) = A+ gygruld)
To(t) = fao(w) 1
() = ful@)

where x € R"” is a state vector, x; is the i-th element of =
and a concentration of a signaling molecule, f; : R™ — R is
a rate equation such as ones described by the law of mass
action and the Michaelis-Menten equation for ¢ = 1,2, ..., n.
A Michaelis constant K, a catalytic constant v and a power
p are positive and v € R is a reference input that is also
a concentration of a signaling molecule in an upper stream
of the system. The negative effect is quite different from
those in engineering systems where the action by input w is
attenuated with a signaling molecule x, in a down stream
of the pathway.

It is well known that in a case of n < 2 any oscillation
does not occur in the negative feedback system (1) for any
parameters [15], and in a case of n > 3 the system (1)
is equivalent to the Goodwin and the relevant model [16],
[17], [18] and have an ability to oscillate with the negative
feedback regulator z,, with a time delay due to a presence of
a cascade (x2, ..., r,—1), indicating that the bio-type negative
feedback has a risk to cause an oscillatory dynamics in a
signal transduction system whereas an ordinary one has a
risk to induce both oscillation and instability in engineering
systems.

Next, we consider the equilibrium state z* of the system
() withn =1, p =1, and f1(z) = —kz; in the simplest
case where k is a degradation rate. Then, we obtain

. —kK+VE2K? + 4kvu
= % (2)

It is obvious that z* = 0 if and only if v = 0, indicating
that the input should return to zero in order to terminate
the signaling response, otherwise the equilibrium state is
shifted to a positive value and the signaling molecule x
is constantly activated in a signal transaction pathway that
is a risk to cause a harmful gene expression. Therefore,
it is important for a bio-type negative feedback system
that the reference input w surely returns to zero and/or a
signal transduction system is robust against an equilibrium
shift. From this simple discussion, we notice that a role
of a reference input is completely different from that in
engineering systems, which implies that the input » from
an upper-stream system is not so much a desired value to
be tracked by the output of the system as a kind of noise
for the system (1) even though it is a main signal to be
transmitted to a subsequent system whereas an extraneous
noise is involuntarily mixed into a system in engineering
applications.
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In a real signal transduction pathway, a positive feedback
effect is also observed and it has been reported that the action
provides a switch-like function [1], [19] and is also a key
regulation to produce an oscillatory dynamics in a system
[12] where bistability of a positive feedback system is a
fundamental property. In what follows, we discuss a differ-
ence in bistability between a positive and a negative feedback
system in a simple case study. Consider the following first-
order positive (PF) [20] and negative (NF) feedback system:

2

. v
. (%
(NF) == —kx+ K12 + bu “)

where k, b, v and K are positive constants as well. For the
system (3), the equilibrium states are given by solutions of
the next cubic equation:
k o b
?xt“?“zuszbu:o )

The discriminant A for the cubic equation is calculated by

A 4k*  8b2u2k? — 20buvk® — k2v?  dbu(bu 4 v)?
- K B K3
(6)

K K2
Then, it is possible to find model parameters and input level
to satisfy each of a condition A > 0 for three different real
solutions relating to bistability and a condition A < 0 for a
real solution and two complex solutions without bistability.
On the other hand, for the system (4), we obtain

A 4k*  8b*u2k? + 36buvk? + 27k%v?  4b3ud(b+ v)
T K e
(7

K K2
which implies that A < 0 for any model parameters
and input level. Hence, the negative feedback system (4)
invariably has a two complex solutions and a real solution,
indicating that no bistability exists in the case.

Remark 1: As discussed in [19], [12], [13], with a larger
power p (Hill coefficient) the system gains an ultrasensitivity
which is a system property closed to bistability, and shows
a switch-like behavior even though there is no hysteresis in
the dynamics.

III. THE FUNCTIONS: A CASE STUDY
A. Example Model

In this section, we study functions of a bio-type negative
feedback system. As mentioned in the previous section, the
input u of the system (1) has two opposite aspects that are
the main signal and a noise. Then, what information of u
is transmitted as a key message via the system? In addition,
does a bio-type negative feedback regulation contribute to
enhance robustness of the system as well as an ordinary
negative feedback control? In order to explore the questions,
we address a case study with a mathematical model on c-Fos
protein expression induced by the mitogen-activated protein
kinase (MAPK) cascade via dusp and c-fos mRNAs expres-
sion [21] in which we here focus on a 10-dimensional closed
loop subsystem including a negative feedback loop instead
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Fig. 1. 10-dimensional example model extracted from [21]

of the original 35-dimensional system (Fig. 1). The reaction
scheme is summarized as follows. A transcription factor Elk-
1, which is a reference input, transcribes preprocessing c-fos
mRNA in the nucleus (reaction v;), and the transcript is
subsequently built into a c-fos mRNA and exported to the
cytoplasm (reaction vy). The mRNA is then translated into c-
Fos protein (reaction v3). c-Fos is activated (reactions v4 and
ve) and deactivated (reactions vs and v7), and imported into
the nucleus (reactions vg and vg). The degradation processes
of the mRNA and the proteins are denoted by reactions v to
v14. In this model, activated c-Fos in the nucleus is the output
of the system, and functions as a transcription factor for
the subsequent system. The Elk-1 induced c-Fos expression
system is negatively regulated by a transcription factor TF
(reaction vp) of which transcription is initiated by the output
in a similar way (reactions vy5 to vg1). The definition of
notations in the model are summarized in Table I (See [21]
for the detailed informations about the rate equations, the
right-hand sides of the differential equations, and model
parameters). In this model, the negative feedback regulation
is described in

Vl uP

q
K +uP + (%)

m

T = —kiz1 +

®)

where ky, Vi, K1, K,,, p and ¢ are positive constants.
According to [21], the dynamics of the input u is also
negatively regulated in the upper-stream system with another
gene expression, and the response is given by a transient
time-course curve.

B. Calculi of Key Characteristics

The example model is mathematically described with the
Michaelis-Menten equations and the Hill functions. Since
the nonlinearity of the model is too high to analytically
investigate the functions, we computationally explore them.
It has reported that three parameters are key characteristics
in a response of a signaling molecule, signaling time T,
duration 6 and amplitude S [22], [23], [24] and the calculi are
typically defined in [22] as follows. For a response z(t) € R
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TABLE I
DEFINITIONS OF NOTATIONS IN THE EXAMPLE MODEL

[ state | notation [ species |
T1 Pre c-fos mRNA preprocessing c-fos mRNA
To c-fos mRNA c-fos mRNA
3 c-Fos(eyt) c-Fos protein in cytoplasm
T4 pc—Fos(Cy“) activated c-Fos protein in cytoplasm
5 c-Fos(nuc) c-Fos protein in nucleus
T6 pc—Fos(““C) activated c-Fos protein in nucleus
T7 Pre TF mRNA preprocessing TF mRNA
g TF mRNA TF mRNA
g TF(eyt) TF protein in cytoplasm
10 TF(““C> TF protein in nucleus
u Elk-1 Elk-1 protein
]
2
S
2= A
[0}
~ ..- amplitude S
A
X(Z90%) fewmeacnnnn

,integral /

X(toa)

t9()%

[1()%

Time ¢

Fig. 2. Four key characteristics

and the integrals

B oo _ oo _ oo 2
1_/0 2(t)dt, T—/O te(t)dt, Q_/O Pa(t)dt,

we have
T = % )
0 = 2@ (10)
5 = g (11)

In addition, there is a result that the initial velocity of a
response is regulated in a signal transduction system, and
determines an amplitude of activation of a signaling molecule
in down-stream pathways [8]. In this paper, we define the
initial velocity by

z(too%) — (t10%)
toon — t10%

V= (12)

where tqgy, and tggy are times at which the response
reaches the levels of 10% and 90% of the first peak of
x(t), respectively. Fig. 2 shows a graphical explanation of the

I'The times are given by periods between the peak time of the input and
the time at which the input returns to zero.



TABLE I
SPECIFICATION OF INPUT RANGE

[ characteristics | minimum [ maximum [ divisions ]
amplitude 10 [nM] 3000 [nM] 20
duration! 60 [s] 3 x 105]s] 20

initial velocity | 0.01 [nM/s] 1.0 [nM/s] 20
x105
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Fig. 3. Input-output relations regarding integrated responses

four characteristics. In what follows, these characteristics of
the output signal z¢ are evaluated in simulations, variously
changing those of the input signal u according to the fact
that a rapid and a slow activations occur in a few minutes
and hours with a concentration of nano molar [nM] order
in a biochemical reaction in a cell. As mentioned in the
previous section, since it was experimentally observed in
[21] that the pattern of the input signal, which is a response
of the transcription factor Elk-1, was transient with a peak,
a triangular waveform with one-shot pulse is employed for
the input signal. The specification of ranges of amplitude,
duration, initial velocity for the input are summarized in
Table II in which the values regarding duration in the table
are defined by a period of time between the peak time of
the input and a time at which the input returns to zero. It
is noted that the net duration of the input is recalculated in
analyzing the results after simulations.

C. No Negative Feedback Case

It is reasonable to evaluate the effect of negative feedback
regulation by comparing with a no-feedback case in which
the Eq. (8) is then replaced by

ViuP

i1 =~k + ———
Z1 121 Kf—i—up

(13)
Table III summarizes the coefficients of correlations of
amplitudes, durations, integrals and initial velocities between
the input u and the output x4 where four characteristics are
calculated from response curves of u and x4 for each of
8000 kinds of input signals (20 amplitudes x 20 durations
x 20 initial velocities in Table II), indicating that there are
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TABLE III
COEFFICIENTS OF CORRELATION (NO-FEEDBACK CASE)
output
amplitude | duration | integral | init. velo.
amplitude 0.22 0.29 0.33 -0.00
input duration 0.24 0.98 0.97 -0.36
P integral 0.23 0.79 0.81 -0.28
init. velo. -0.12 -0.23 -0.23 0.28

high correlations between the input and the output duration
or integral (indicated with a bold font). The input to output
relations regarding integrated responses are depicted in Fig.
3 in which results with three amplitudes out of 20 kinds
of input amplitudes are illustrated. Then, we find that the
relation is almost linear and the slope depends on the input
amplitude. This property is favorable since we can tune the
relation by controlling the input amplitude, which has a
function of a certain type of integral gain. It is reported that
characteristics of a biochemical reaction network described
with the Michaelis-Menten equations become closed to a
linear system in a weakly activated condition since the
equations can be linearized in a case with the substrate
x satisfying * < K for a Michaelis-Menten equation of
Va /(K + x) [22]. In fact, if we limit the variations of input
signals to induce a weakly activated condition, the input to
output relation between the input amplitude and the output
amplitude (or integral) show a high correlation as shown in
Fig. 4 despite of a much less correlation in Table III.

Hence, it is concluded that what the system can transmit in
the information flow is integral or duration, and in a weakly
activated case amplitude is also transmitted.

D. Negative Feedback Case

Table IV summarizes the coefficients of correlations in
the negative feedback case with Eq. 8 in a similar way to
the previous calculations. Then, we find that there are high
correlations between initial velocity of the input and integral,
amplitude or initial velocity of the output (indicated with
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TABLE IV
COEFFICIENTS OF CORRELATION (NEGATIVE FEEDBACK CASE)

output
amplitude | duration | integral | init. velo.
amplitude 0.17 0.29 0.19 0.10
input (_iuration -0.30 0.10 -0.29 -0.33
integral -0.18 0.28 -0.16 -0.24
init. velo. 0.75 -0.05 0.77 0.70

a bold font), which is completely different from Table III
although the high correlation between the initial velocity and
the amplitude has been reported in [8]. The input to output
correlations regarding the initial velocity vs the integral are
given in Fig. 5 as well in which a larger initial velocity
of the input induces a larger integral of the output and the
relation curves are almost the same in the range from 0.01
[nM/s] to 0.1 [nM/s], and different depending on the input
amplitudes. This property is also favorable since we can
utilize the amplitude of the input to determine the relation
curve.

Hence, it is concluded that what the system can transmit
in the information flow is the initial velocity of the input.
Then, to determine the input amplitude is similar to tune a
derivative gain.

IV. DISCUSSIONS
A. Application to PID control in Molecular Robot

We now consider the example model as a controller.
Then, from the results, the input signals with a larger
amplitude, integral and initial velocity induce the output
signal with a larger integral in cases of no-feedback under a
weakly activated condition, no-feedback and negative feed-
back, respectively. These input to output properties remind
us a proportional, an integral and a derivative gain of a
PID controller. In a molecular robot [2], since a feedback
controller is implemented in a biochemical reaction network
and therefore only operations without negative values are
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available, we have to design one by using bio-type negative
feedback control where the control objective is to drive a
biochemical actuator such as a molecular motor based on a
reference input. Then, the structures as shown in Fig. 6 is a
possible candidate for a PID controller in a molecular robot
(bio-type PID controller). It should be noted that the bio-type
PID controller can induce a harmful oscillation in the system
depending on the parameters as shown in the Section II.

B. Application to Signal Transmission in Molecular Robot

We next consider the example model as a signal transmis-
sion system. Then, it is desirable to chain ones in a cascade
in order to transmit an information to a far system, and
to achieve a reliable and robust transmission against noise.
Regarding the former, it would be reasonable that the input
and the output employ the same characteristics to realize
a connectivity among transmissions. Then, from Tables III
and IV, a signal transmission with duration or integral of
the no-feedback system, or initial velocity of the negative
feedback system is suitable. It might be easier to design the
initial velocity of a reaction since a higher concentration of
a signaling molecule results in a higher initial velocity of
a reaction. For example, consider a third-order biochemical
reaction.

l'l(t) —kpl'l(t).’ﬂg(t) + kml'g(t)
i‘g(t) = —kpl‘l(t).rg(t) + kml‘g(t) (14)
T3 (t) = —km$3(t) + k‘pl‘l (t).’L‘g (t)

Then, it is obvious that a larger x; (or z3) induces a
larger initial velocity of the reaction for x3. Hence, it is
reasonable to utilize the bio-type negative feedback system
as a signal transmission in which what the system transmits
in the pathway is the information about the initial velocity
of the input signal. Regarding robustness, we test a cascade
system with the example model as shown in Fig. 7. Then,
the simulations with and without random noise indicate that
the cascade is robust against the disturbance.

Next, we consider the core system to give the system
property of the example model.

) viu(t
i(t) = ‘*klxl(t)*’j?fliéi%jq (15)
do(t) = —kowa(t) + voxy (1)

where ki, ko, v1, v, K and q are positive constants. In a
case with xo < K, x1-system is given by
viu

.’tl = —klxl —+ 7

which implies that x; aims to the steady-state value with
a time constant, and the initial velocity of x; increases
depending on an increasing of the initial velocity of the input
u. If 9 > K and x2 is enough large to fully attenuate the
effect of u, we have

(16)

a7

1 = —ki11

which implies that x; is exponentially decreasing from a
initial value. From the two cases, there is a trend that x;
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can response with an input u with less effect of zo. Then,
the function of the negative feedback seems to be a selector
between the two structures (16) and (17) and the effect is
enhanced with a larger Hill coefficient q.

V. CONCLUSIONS

In this paper, we consider functions of bio-type negative
feedback system by using the example model. First, we
discuss about the difference in the mechanics of negative
feedback between an engineering system and a biochemical
reaction system. Next, in a case study, we investigate the
example model with bio-type negative feedback loop. We
show that the model is a possible solution to realize a bio-
type PID controller and a signal transmission system in
molecular robot.
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