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Abstract—In industry, developing efficient and effective methods 

for using all the available data is important. Previous work has 

examined the ability to identify process models using closed-loop 

data where the reference signal is not being excited. However, it 

was shown that only with sufficiently large time delays or fast 

sampling rates could the data be used. Therefore, this paper will 

examine, in the context of proportional, integral, and derivative 

controllers (PID), the minimal required excitation conditions for a 

reference signal in order to identify the process. Similarly to the 

previous case, it is shown that the complexity of the required 

reference signal depends strongly on the sampling rate and time 

delay. However, since many fast processes without time delay can 

be modelled as first-order systems, they can indeed be identified 

when the excitation in the reference signal is a simple function or 

sequence of functions. Using a heated tank simulation, the effect on 

the continuous time parameters is investigated for different 

sampling rates and excitations signals. It is shown that as expected 

an external reference signal can identify previously unidentifiable 

cases. 

1. INTRODUCTION 

 In industry applications, the development of 

process models from closed-loop data is an important 

exercise with many different applications, including fault-

detection and process control. Although it is preferable to 

use data obtained without perturbing the system, recently, it 

has been shown that such an approach cannot be used in all 

cases, for instance, in processes with small time delays or 

slow sampling rates. In such cases, there is a need to perturb 

the system. Although it is well known that white noise or 

other sufficiently complex perturbations can excite the 

system, such random or large excitations can cause 

unnecessary process variability or angst amongst the 

operators. Therefore, there is a need to determine the 

relevant minimal excitations or perturbation to identify a 

model. 

 Determining the conditions for identifying a 

discrete model from closed-loop data has a long history. The 

earliest work in discrete closed-loop identification, which 

includes work by Box, McG                               

sought to determine the theoretical limits on the delay to 

guarantee consistency of parameter estimates in the absence 

of a reference signal. [1, 2, 3]. This research led to the 
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development of general conditions for closed-loop 

identification. In order to obtain a solution various 

assumptions were made including dealing with an 

autoregressive moving average model with exogenous input 

(ARMAX) with at least a single sample delay [3] or various 

degrees of a priori knowledge of pole-zero cancellations in 

the closed-loop transfer function [4, 5, 6]. Removing these 

conditions would provide general results that would then 

have broad applicability. The general case for closed-loop 

identification with no perturbations in the reference signal 

has been recently completed [7]. However, there has not 

been any work done to extend these results to the case where 

there are perturbations in the reference signal. 

Therefore, the objectives of this paper are 1) to extend 

the previously developed closed-loop identification results to 

the case where there are changes in the references signal; 2) 

using the conditions to obtain relationships between required 

reference signal excitation, model orders, and PID 

controller; and 3) finally, to provide simulation experiments 

to verify the theoretical results. 

2. IDENTIFIABLITY IN CLOSED-LOOP SYSTEMS 

A. Theoretical Results 

 Assume that the process of interest can be described 

as a closed-loop prediction error (PE) system, similar to that 

shown in Figure 1, that is, 
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where the X-polynomial is given as 
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nX is the order of the polynomial; the Y-, A-, C-, D-, and F-

polynomials are defined similarly to the X-polynomial; the 

B-polynomial is defined as 
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nB is the order of the B-polynomial; and nk is the time delay 

in the process, which excludes the one sample time delay 

introduced by the sampler. For simplicity of presentation, 

the backshift operator, z
-1

, will be dropped in the following 

sections. 

For such a process, the one-step ahead predictor, 

y(t | t – 1, θ) can be written as 
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Figure 1: Generic Closed-loop Process 
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A quasistationary vector signal, ψt, is persistently 

exciting if   (ψtψt
T
) > 0 [8]. Furthermore, a quasistationary 

vector signal, rt, is sufficiently rich of order nr if the 

following regressor is persistently exciting, 
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 In order to distinguish between any two candidate 

models for a given closed-loop data set, it is necessary that 

the following two conditions hold [8]: 
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    Δ   p         h    ff       b  w     h   w            

models 1 and 2, that is, 

ΔW = W1 – W2           (8) 

Substituting the results from Equation (7) into 

Equation (6) gives 
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In order to solve for the closed-loop conditions, consider that 

1) There are possible cancellations between D1 and F1, 

so that D1 =    1 and F1 =    1, where H is a 

polynomial with order nH and   1 and   1 are 

coprime. 

2) There are possible cancellations between C1  1Y and 

 1 1 1

k
n

F A HY z B X


 , so that 

   

1 1 1 1 1 1

1 1 1 1 1 1

k k
n n

C FY TC FY TC FY

F A HY z B X T F A HY z B X
 

 

  

 (10) 

where T is a polynomial with order 

nT = min(nC + nF + nY, nF + nA + nY, nB + nX) and 

   1   1   and  1 1 1
kn

F A HY z B X


  are coprime. 

This takes into consideration any potential pole-

zero cancellations in the closed-loop system transfer 

function. It should be noted that since the common 

terms in the denominator may only appear after the 

terms in the denominator have been combined, it 

can be shown that [7] 
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where M1, N, P1, and O are polynomials constructed 

so that the common terms between numerator and 

denominator of the closed-loop transfer function 

given by the T-polynomial, appear in both terms of 

the sum, the orders of the M1 and P1 are, 

respectively, equal to that of the sum of the A1- and 

F1-polynomials and the B1-polynomials, and, 

finally,    and    are coprime. The number of 

overbars placed over the polynomials represents the 

number of potential reductions in the order of the 

polynomial due to non-coprimedness of the selected 

polynomials. 

Theorem 1: (Routine-Operating Case) Assume that there 

are no excitations in the reference signal and the 

assumptions described above hold, then the system can be 

identified if the following relationship holds among the 

orders of the polynomials and the discrete time delay: 
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Proof: Since the proof follows the same approach as used in 

[9] and is fully proven in [10], it is omitted. 

Theorem 2: (Excited Reference Signal Case) Assume that 

the assumptions described above hold, then the minimal 

excitation required for the reference signal is 

 

 

min , ,

min ,

r D C F Y A F Y B X

F A X k B Y

n n n n n n n n n n

n n n n n n

      

    
 (13) 

with the caveat that the points of support for rt do not 

coincide with any possible zeroes of X on the unit circle. The 

richness order of the reference signal is denoted by nr and is 

defined by Equation (5) 

Proof: The proof of this theorem is given in Appendix I. 

Corollary 1: (General PI controller) Solving Equation (13) 

for a proportional, integral (PI) controller shows that the 

reference signal must have a persistent excitation order of 
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Proof: This corollary results by letting nY = nX = 1 in 

Equation (13) and simplifying the resulting equation. 

Corollary 2: (First-Order Box-Jenkins Process with PI 

controller) Solving Equation (13) for a proportional, integral 

(PI) controller shows that the reference signal must have a 

persistent excitation order of 

2
r D kn n n    (15) 

Proof: This corollary results by letting nY = nX = nF = nB = 1 

and nA = 0 in Equation (13) and simplifying the resulting 

equation. 

Corollary 3: (General PID controller) Solving Equation 

(13) for a proportional, integral, derivative (PID) controller 

shows that the reference signal must have a persistent 

excitation order of 

 

 

min , , 1

min 1 ,

r D C F A F B

F A k B

n n n n n n n

n n n n

    

   
 (16) 

Proof: This corollary results by letting nY = 1 and nX = 2 in 

Equation (13) and simplifying the resulting equation. 

Corollary 4: (First-Order Box-Jenkins Process with PID 

controller) Solving Equation (13) for a proportional, 

integral, derivative (PID) controller shows that the reference 

signal must have a persistent excitation order of 

1
r D kn n n    (17) 

Proof: This corollary results by letting nY = nF = nB = 1, 

nA = 0, and nX = 2 in Equation (13) and simplifying the 

resulting equation. 

B.  Practical Implications for a PID Controller 

In previous work, it has been noted that a PID controller 

is not complex enough to provide sufficient excitation to 

identify a process from routine-operating data [7]. These 

results, especially Corollary 2 show the additional excitation 

that needs to be provided in order to identify the process. 

Furthermore, it can be seen that the discrete time delay 

impacts on the ability to identify the process, where the 

relationship between the continuous and discrete time delays 

is 

d

k
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n
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
  (18) 

where τd is the continuous time delay and τs is the sampling 

time. This implies that decreasing the sampling time will 

decrease the required signal complexity. However, in 

practice, it may not always be feasible to reduce the 

   pl             h    h    f            l’   x            

minimised or not required. Firstly, the process may have an 

extremely small continuous time delay which would in turn 

require a correspondingly small sampling rate (say every 

nanosecond or faster). Secondly, a process could have no 

observable time delay which would imply that it would be 

impossible to identify it without any excitation. However, it 

is often the case that such processes can be modelled with 

simple dynamics such as a first-order Box-Jenkins (BJ) 

model. In such cases, it can be seen from Corollary 4 that, as 

long as the disturbance model is low order, then for PID 

controllers the required excitation are either sine waves 

(with persistent order of 2) or step changes (with persistent 

order of 1). Even more complex disturbance models would 

require only a sine wave that contains multiple frequencies. 

On the other hand, it can be seen that from Corollary 2, for 

PI controllers, a more complex result is required from the 

start. This agrees well with the observation that a PI 

controller is less complex than a PID controller and therefore 

cannot provide as much excitation. In such cases, it can be 

seen by comparing Corollaries 2 and 4 that the difference in 

complexity between the two controllers is 1 persistent 

excitation order. This also holds between the general results 

given by Corollaries 1 and 3, except that there exist regions 

where the performance is equivalent. 

3. SIMULATION EXAMPLE 

 In order to test the above results, a simulation of a 

large heated tank will be run, whose characteristics can be 

described as follows: 
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A discrete proportional, integral, and derivative (PID) 

controller will be used with parameters given as 

1
, 200, 4.5

1.54
I DcK      (20) 

and sampling time, τs ∈{1, 2, 10, 15, 50, 100, 200}. The 

discrete PID controller can be written as 
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It can be noted that a PI controller was also be designed by 

setting τD = 0. A first-order Box-Jenkins model with time 

delay given as 
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will be used, where the time delay, nk, is computed as 

1
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where ⌊·⌋ is the floor function. This process was simulated 

for 5,000 seconds for both the case where there was no 

change in the reference and the case where the reference 

signal was changed from 0 to 1 at 2,500 seconds under 
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identical noise conditions. For each sampling time, the 

above simulation was repeated 100 times and the gain and 

process time constants were obtained for both cases. 

 The discrete-time parameters were converted into 

the continuous time parameters using the following exact 

discretisation formulae [11]: 
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where τs is the sampling time, ̂  is the estimated value of β, 

and ̂ is the estimated value of α. 

 It is expected that as the sampling time increases, 

the accuracy of the estimated parameters should decrease. 

The exact point at which is occurs depends on the conditions 

of the given experiment. Since there may not be pole-zero 

cancellations at the given points, then the system may be 

identifiable even if the condition is not satisfied. At fast 

sampling rates, it is expected that all methods should give 

better parameter estimates than at slow sampling rates. 

 The results are shown in Figure 2 and Figure 3. 

Figure 2 shows the mean deviation between the estimated 

process time constant and the true value (200 s) as a function 

of the sampling time for all four cases: PI and PID 

controllers with or without a change in the reference signal. 

All time constants greater than 400 s were removed. This 

was only the case for the no reference signal cases, where for 

each signal about 20 such cases were found. The largest 

number occurred at higher sampling rates and for the PI 

controller. Figure 3 shows the same results except that it is 

now for the deviation in the estimated process gain (K).  

Gains greater than 5.0 in absolute value were removed. 

Again, the only place here there were any such removals was 

in the case without any reference signal. 

 From Figure 2 and Figure 3, it can be seen that the 

cases with a reference signal provides a much better estimate 

that those without. This is expected as a reference signal will 

provide more excitations in the process and so that the 

signal-to-noise ratio will be greater and hence it will be 

easier to estimate the parameters. As expected, the parameter 

estimates for the case with a reference signal are well 

estimated up to about 50 samples. This is a slightly larger 

limit than expected (nr = 1 ≥ 2 + 1 – τd / τs = 2). This implies 

that the given system does not have the full number of pole-

zero cancellations that are expected. Furthermore, it can be 

noted that in this particular example, the performance of the 

PI and PID controllers are similar. This is to be expected 

given the rather small value selected for the derivative term. 

Secondly, the behaviour of the case without a reference 

signal shows that if the sampling time is appropriately 

selected, it is possible to identify the process parameters. 

However, given the minimal excitation present, there will be 

a larger spread in the process values. In fact when comparing 

the standard deviations for the time constant estimates, the 

values for the case with a reference signal is about 5.5 s, 

while for the case without a reference signal is 90 s. Finally, 

it can be noted that cases with no reference signal only 

produces accurate estimates to a sampling time of 30 s. As 

expected, this is a smaller value than for the reference signal 

case.  

 

Figure 2: Mean Deviation between Estimated and True Time Constant (τp) 
for all 4 Cases 

 

Figure 3: Mean Deviation between Estimated and True Process Gain (K) for 

all 4 Cases 

 In order to investigate further the effect of sampling 

time and reference signal on the distribution of the parameter 

estimates, the histograms of the process time constants will 

be examined for both controller types and cases. The results 

for the gain are similar. The same bounds for rejecting 

values will be used. The results are shown in Figure 4 and 

Figure 5. As expected, the distribution of the parameter 

estimates is much greater for the no reference signal case, 

where the excitation is weaker than for the reference signal 

case. 
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Figure 4: Histograms of τ p for the PI and PID Controllers for the Reference 

Signal Case 

 

Figure 5: Histograms of τ p for the PI and PID Controllers for the No 
Reference Signal Case 

4. CONCLUSIONS 

 In this paper, the conditions for closed-loop 

identification of a process so as to minimise the required 

excitation of the reference signal were developed. Special 

cases were developed for the proportional, integral (PI) and 

proportional, integral, and derivative (PID) controllers. 

These results were compared with the previously developed 

closed-loop conditions for identifiability in the absence of a 

reference signal. They are both similar in that the sampling 

time can affect the region over which the system can be 

identified. Similar to the no reference signal case, a fast 

sampling rate can improve the identifiability of the system. 

With external excitation provided by the reference signal, 

the region of identifiability can be expanded to include a 

much larger region. 

Practically, these results provide a complete picture 

that will allow arbitrary systems to be identified irrespective 

of the actual time delay.  
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APPENDIX I: PROOF OF THEOREM 2 

 Assume that the second condition of Equation (9) 

does not hold, that is, the model cannot be identified using 

routine operating data. As well, assume that the same 

cancellations given as 1 to 2 in Section 2.A apply. 

 From the first component of Equation (9), the term 

 f             ΔWy, which can be written using the 

simplifications as 

2 2 1 1

2 1

y

A D A D
W

C C
    (25) 

Re-arranging Equation (25) gives 

 
1 2 2 2 1 1

1 2

1
C A D C A D

C C
  (26) 
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Before we can proceed with the final result, it will be useful 

to establish some results that fall out from both the given 

assumptions and Theorem 1, which deals with the routine-

operating case. 

Lemma 1: Based on the cancellations previously mentioned 

C2F2Y =    1   1   (27) 

where   is the polynomial of order n  = nH + nT. 

Proof: Taking into consideration the cancellations 

previously mentioned and substituting into the second 

component of Equation (9) gives 
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1 1 1 2 2 2

2 21 1
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C F YC FY
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  (28) 

Therefore, since the terms on the left are coprime by the 2 

assumptions, based on the theory of Diophantine equations, 

the general solution can be written as 
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where   is the polynomial of order n  = nH + nT. Q.E.D. 

Lemma 2: It can be shown that 
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where γ is a polynomial whose leading term is zero with 

order min(nM – nO, nP – nN) + nD + nT. 

Proof: Rewriting the second component of Equation (29) 

obtained in solving Lemma 1 to isolate N, O,   , and   , 

we have that 
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where γ is a polynomial whose leading term is zero, since 

all the polynomials on the left hand side have a leading 

term of 1, which upon subtraction will be zero. Its order is 

given as min(nM – nO, nP – nN) + nD + nT.  Q.E.D. 

Using Lemma 1, Equation (26) can be rewritten as 
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  (33) 

Since C1  1Y =    1   1  , Equation (33) can be rewritten as 

 
1 2 2 2 1 1 1 1

2 1 2

1
C YTF A D C YF A D

TF YC C
  (34) 

Simplifying Equation (34) by cancelling the common terms 

C1 and Y gives 

 
2 2 2 1 1 1

2 2

1
TF A D F A D

TF C
  (35) 

Finally, since D1 =    1 and F1 =    1, Equation (35) can be 

rewritten as 

 
2 2 2 1 1 1

2 2

1
TF A D F A D

TF C
  (36) 

Now, since we are interested only in the orders of terms and 

their effect on identifiability, it can be noted that by 

construction the order of M and FA are the same. Therefore, 

it is possible to exchange these terms in Equation (36) to 

obtain 

 
2 2 1 1

2 2

1
TM D M D

TF C
  (37) 

Let    be the defined as those common terms of T that are 

found in M to give   . Thus, Equation (37) can be written as 

 
2 2 1 1

2 2

T
TM D M D

TF C
  (38) 

Using Lemma 2, Equation (38) can be written as 

2 2

T O

TF C


 (39) 

Therefore, using Equation (39) the first component of 

Equation (9) can be written as 

2

2 2

0
t

T O
E r

TF C




  
     

 (40) 

The only way to guarantee that Equation (40) will be 

satisfied is to have that the reference signal have a persistent 

excitation greater than or equal to the order of γ, that is, 

   (  –   – )    
r M O P N D T

n n n n n n n    (41) 

provided that the points of the support of rt do not coincide 

with the zeroes of X on the unit circle. 

 Based on the definitions of the original polynomials 

in terms of the new polynomials, Equation (41) can be 

rewritten in terms of the original polynomial orders to give 

 

 

min , ,

min ,

r D C F Y A F Y B X

F A X k B Y

n n n n n n n n n n

n n n n n n

      

    
 (42) 

which is identical with Equation (12). Q.E.D. 
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