
Real-Time Swing-up of Double Inverted Pendulum by Nonlinear Model
Predictive Control

Pathompong Jaiwat1 and Toshiyuki Ohtsuka2

Abstract— In this study, the swing-up of a double inverted
pendulum is controlled by nonlinear model predictive control
(NMPC). The fast computation algorithm called C/GMRES
(continuation/generalized minimal residual) is applied to solve
a nonlinear two-point boundary value problem over a receding
horizon in real time. The goal is to swing-up and stabilize
two pendulums from the downward to upright position. To
make the tuning process of the performance index simpler, the
terminal cost in the performance index is given by a solution of
the algebraic Riccati equation. The simulation results show that
C/GMRES can solve the NMPC problem in real time and swing-
up the double inverted pendulum with a significant reduction
in the computational cost compared with Newton’s method.

I. INTRODUCTION

An inverted pendulum is a mechanical system consisting
of a pendulum connected to a cart that move freely on
the horizontal axis. The inverted pendulum is a classic
problem in dynamics and control theory and is widely used
for testing many types of control algorithm because of its
highly nonlinear characteristic. Also, there are many practical
problems for which the inverted pendulum is used as a
representative model such as the stabilization of humanoid
or robot motion [1], [2], the motion of a hexapod robot [3],
the launching of a rocket, the movement of the human
arm [4], and the behavior of a vehicle during rollover [5],
[6]. Therefore, there have been numerous studies on inverted
pendulums such as on their stabilization and swing-up.

A double inverted pendulum is an extension of a single
pendulum, with one more pendulum added to a single
inverted pendulum. Therefore, a double inverted pendulum
has an extremely high nonlinearity property compared with
a single inverted pendulum and it is very difficult to swing-
up and stabilize a double inverted pendulum. Despite this,
more sophisticated types of inverted pendulums such as triple
and quintuple inverted pendulums can be stabilized by using
a Linear-Quadratic Regulator (LQR) controller and a fuzzy
control method [7], [8]. However, these control methods only
deal with the stabilization and only allow the limited range of
movement of the pendulum around the upright equilibrium
point, where the system can be approximated as a linear
system.

Many types of control algorithm have been applied to
stabilize the double inverted pendulum about the upright

1Pathompong Jaiwat is with the Graduate School of Engineering Sci-
ence, Department of Systems Innovation, Osaka University, Osaka, Japan
jaiwat@arl.sys.es.osaka-u.ac.jp

2Toshiyuki Ohtsuka is with the Graduate School of Informat-
ics, Department of Systems Science, Kyoto University, Kyoto, Japan
ohtsuka@i.kyoto-u.ac.jp

equilibrium point, such as optimal control combined with
neural network adaptive control [9] and LQR combined
with Proportional-Derivative (PD) control [10]. One of the
challenging problems of the double inverted pendulum is its
swing-up from the downward position to the upright position.
The swing-up of the double inverted pendulum can be
performed by using an energy method and by separating the
swing-up into three steps: first stabilizing the first pendulum
in the upright position, then swinging-up the second pendu-
lum while stabilizing the first, and finally stabilizing both
pendulums in upright position [11]. However, this control
method requires considerable time before both pendulums
reach the upright position. Another method of swing-up
is to using feedback control and bang-bang control [12].
However this method requires a torque exerted about the
suspension point, which is not practical in some systems.
The swing-up of double and triple inverted pendulums has
been demonstrated experimentally in [13], [14]. However,
the nominal trajectories in these experiments were calculated
offline.

Nonlinear model predictive control (NMPC) has never
been applied to the double inverted pendulum because of its
high computational cost and the highly nonlinear properties
of the double pendulum. That is, the swing-up double in-
verted pendulum by NMPC will have a high computational
cost because of the need to solve the two-point boundary
value problem (TP-BVP) in real time. This requirement is
very difficult to achieve.

In this study, the double inverted pendulum is swung-up
and stabilized by NMPC, where the fast calculation method
called C/GMRES [15] is applied to solve the NMPC problem
to achieve the real-time requirement. In this paper, we
describe the dynamic model of the double inverted pendulum
in Section II. The NMPC and C/GMRES algorithms are
described in Section III. The simulation results are reported
in Section IV. Finally, conclusions are given in Section V.

II. DOUBLE INVERTED PENDULUM

A. Dynamic model of double inverted pendulum

The double inverted pendulum is a mechanical system
consisting of a series of two pendulums attached to a cart
that moves freely on a horizontal surface. It has three degrees
of freedom, which are the horizontal position x, the first
pendulum angle θ1, and the second pendulum angle θ2. The
free body diagram of the double inverted pendulum system
is shown in Fig. 1. The cart has mass M , the first pendulum
has mass m1, and the second pendulum has mass m2. The

290



moments of inertia at the center of gravity (C.G.) of the first
and second pendulums are I1 and I2, respectively.

Fig. 1. Double inverted pendulum

To obtain the equations of motion of the double inverted
pendulum, the coordinates relative to the C.G. must be
defined. The coordinate of cart mass M is defined by
(XM , YM ), and the coordinate of first and second pendulum
are (Xm1

, Ym1
) and (Xm2

, Ym2
), respectively.

The coordinates (XM , YM ), (Xm1
, Ym2

) and (Xm1
, Ym2

)
are given by

XM = x,

YM = 0,

Xm1 = x+ l1 sin θ1,

Ym1 = l1 cos θ1,

Xm2 = x+ 2l1 sin θ1 + l2 sin θ2,

Ym2 = 2l1 cos θ1 + l2 cos θ2.

The Lagrangian L is defined by L = T−V , where T is the
kinetic energy and V is the potential energy of the system.
The kinetic and potential energies of the double inverted
pendulum can be obtained from the following equations:

TM =
1

2
M(Ẋ2

M + Ẏ 2
M ),

Tm1
=

1

2
m1(Ẋ2

m1
+ Ẏ 2

m1
) +

1

2
I1θ̇1

2
,

Tm2 =
1

2
m2(Ẋ2

m2
+ Ẏ 2

m2
) +

1

2
I2θ̇2

2
,

VM = 0,

Vm1
= mgYm1

,

Vm2
= mgYm2

.

Thus, the Lagrangian can be expressed as L = TM +
Tm1

+ Tm2
− (VM + Vm1

+ Vm2
). The equation of motion

can be obtained from the following equations:

d

dt

∂L

∂ẋ
− ∂L

∂x
= u,

d

dt

∂L

∂θ̇1
− ∂L

∂θ1
= 0,

d

dt

∂L

∂θ̇2
− ∂L

∂θ2
= 0.

(1)

Equation (1) can be rewritten in the following simpler
matrix form:

C(q)q̈ +D(q, q̇)q̇ + E(q) = Gu, (2)

where q = [x, θ1, θ2]T . Equation (2) can be rearranged
in the form ẋ = f(x, u), where x = [q, q̇]T =
[x, θ1, θ2, ẋ, θ̇1, θ̇2]T is the state vector and, in particular, we
have

f(x, u) =

[
q̇

C−1(Gu−Dq̇− E)

]
. (3)

B. Linearization

As described in Subsection III-D, the terminal cost can
be obtained by solving the algebraic Riccati equation. This
equation is associated with the linear dynamic system, ex-
pressed by

ẋ = Ax +Bu.

Equation (3) can be linearized to derive an approximate
linear solution around the upward equilibrium point x = 0;
this yields

A =

[
0 I

−C(0)−1 ∂E(0)
∂q 0

]
, B =

[
0

C(0)−1G

]
,

where I is the identity matrix.

III. REAL-TIME NONLINEAR MODEL PREDICTIVE
CONTROL PROBLEM

A. Problem formulation

MPC is a feedback control method that uses current
state values and target values of a state variable to predict
and optimize the system responses in advance. The goal is
to make the system responses close to the target values.
Normally, MPC optimizes a series of state trajectories on
a receding horizon by providing an optimal input. Its uses
the current state variables to find a series of optimal inputs,
updates the state variables in the next sampling period, and
repeats the calculation in the next time step.

To apply MPC to a nonlinear system, a nonlinear two point
boundary value problem (NTP-BVP) must be solved. NMPC
can be initially formulated by the nonlinear state equation

ẋ(t) = f(x(t), u(t), p(t)),

where x(t) ∈ Rn is the state vector, u(t) ∈ Rmu is the
input vector, and p(t) ∈ Rmp is the vector of given time-
dependent parameters. The control input u(t) is determined
at each time t to optimize a performance index J with a
receding horizon from t to t+ T . The NMPC problem is a

291



set of finite-horizon optimal control problems along with a
fictitious horizon time τ as follows.

Minimize

J = φ(x∗(t+ T, t), p(t+ T ))+∫ t+T

t

L(x∗(τ, t), u∗(τ, t), p(τ))dτ,

subject to
x∗τ (τ, t) = f(x∗(τ, t), u∗(τ, t), p(τ)),

x∗(t, t) = x(t),

C(x∗(τ, t), u∗(τ, t), p(τ)) = 0,

where xτ represents ∂x/∂τ , x∗(τ, t) is the trajectory along
the fictitious time horizon τ , starting from x(t) at τ = t,
and u∗(τ, t) is the control input, which is determined on
the receding horizon as the solution of the finite-horizon
optimal control problem. The actual input to the system is
given by u(t) = u∗(t, t) and C(x, u) is an equality constraint
of the system. An inequality constraint can be transformed
into the equality constraint by introducing a dummy input as
explained in [15].

B. Discretized problem

In this subsection, we describe the method of finding the
optimal control on a discretized horizon. First, the horizon
is divided into N steps and the optimal control problem is
discretized on the τ -axis using the forward difference method
as follows:

x∗i+1(t) = x∗i (t) + f(x∗i (t), u
∗
i (t), p

∗
i (t))∆τ, (4a)

x∗0(t) = x(t), (4b)
C(x∗i (t), u

∗
i (t), p

∗
i (t)) = 0, (4c)

J = φ(x∗N (t), p∗N (t)) +

N−1∑
i=0

L(x∗i (t), u
∗
i (t), p

∗
i (t))∆τ,

(4d)

where ∆τ := T/N , x∗i (t) corresponds to x∗(i∆τ, t), and
p∗i (t) is given by p(t+ i∆τ).

The discretized problem is solved at every sampling time
t. Therefore, the input sequence on the horizon {u∗i (t)}

N−1
i=0

is optimized at each sampling time t. To find the minimum
of the performance index given by Eq. (4d), the control input
should be chosen to minimize the Hamiltonian, which is a
consequence of Pontryagin’s minimum principle [16]. Let H
denote the Hamiltonian defined by

H(x, λ, u, µ, p) :=L(x, u, p) + λT f(x, u, p)+

µTC(x, u, p),

where λ ∈ Rn is the costate and µ ∈ Rmc is the Lagrange
multiplier associated with the equality constraint. The first-
order necessary conditions for the sequences of the optimal
control inputs {u∗i (t)}

N−1
i=0 , multipliers {µ∗i (t)}

N−1
i=0 , and

costates {λ∗i (t)}Ni=1 along the horizon can be found by using

Pontryagin’s minimum principle:

Hu(x∗i (t), λ
∗
i+1(t), u∗i (t), µ

∗
i (t), p

∗
i (t)) = 0, (5a)

λ∗i (t) =λ∗i+1(t)+

HT
x (x∗i (t), λ

∗
i+1(t), u∗i (t), µ

∗
i (t), p

∗
i (t))∆τ,

(5b)

λ∗N (t) = φTx (x∗N (t), p∗N (t)), (5c)

where Hu, Hx, and φx are ∂H/∂u, ∂H/∂x, and
∂φ/∂x, respectively. Note that the optimal input sequences
{u∗i (t)}

N−1
i=0 and {µ∗i (t)}

N−1
i=0 must satisfy Eqs. (5a)–(5c).

Equations (5a)–(5c) are the necessary conditions for optimal-
ity. Since we wish to optimize the sequences of {u∗i (t)}

N−1
i=0

and {µ∗i (t)}
N−1
i=0 , we define a vector comprising the inputs

and multipliers as

U(t) :=[u∗T0 (t), µ∗T0 (t), u∗T1 (t), µ∗T1 (t), ...

, u∗TN−1(t), µ∗TN−1(t)]T ,

where U(t) ∈ RmN and m:=mu + mc. From Eq. (5c), the
costate λN depends on xN . It can also be seen that, for
the sequence {x∗i (t)}Ni=0, the future state depends on the
current state. However, for the costate sequence {λ∗i (t)}Ni=0,
the current costate depends on the future costate. That is,
{x∗i (t)}Ni=0 is calculated recursively using Eqs. (4a) and (4b),
and then {λ∗i (t)}Ni=0 is determined recursively from i = N
to i = 1 using Eqs. (5b) and (5c). Since x∗i (t) and λ∗i+1(t)
in Eqs. (4c) and (5a) are determined by Eqs. (4a), (4b), (5b),
and (5c), Eqs. (4c) and (5a) can be regarded as a single
equation represented by a column vector F as follows:

F (U(t), x(t), t) :=
HT
u (x∗0(t), λ∗1(t), u∗0(t), µ∗0(t), p∗0(t))

C(x∗1(t), u∗1(t), p∗1(t))
...

HT
u (x∗N−1(t), λ∗N (t), u∗N−1(t), µ∗N−1(t), p∗N−1(t))

C(x∗N−1(t), u∗N−1(t), p∗N−1(t))


= 0.

(6)

Solving Eq. (6) gives the optimal vector U(t), which is a
sequence of inputs and Lagrange multipliers.

C. Continuation/GMRES

From the previous subsection, to solve the optimal control
problem, the equation F (U, x, t) = 0 (Eq. (6)) must be
solved at each sampling time. However, iterative methods
should be avoided because of their high computational cost.
This subsection describes an alternative method called the
C/GMRES method, which greatly reduces the computational
cost. In this method, instead of solving Eq. (6) directly, we
find the derivative of U with respect to time, U̇ , such that
F (U(t), x(t), t) = 0 is satisfied by choosing U(0) so that
F (U(0), x(0), 0) = 0. Then we determine U̇ so that

Ḟ (U, x, t) = AsF (U, x, t), (7)

292



where As is a stable matrix used to stabilize F = 0. From
the chain rule of differentiation, Eq. (7) becomes

FU U̇ = AsF − Fxẋ− Ft.

If FU is nonsingular, we obtain the following differential
equation:

U̇ = F−1U (AsF − Fxẋ− Ft). (8)

The vector U̇ can be determined using Eq. (8) for the
given variables U, x, ẋ, and t. The optimal solution U(t)
can be found without the use of an iterative optimization
method by computing U(t + ∆t) = U(t) + U̇(t)∆t in real
time. However, finding U̇ using Eq. (8) still has a high
computational cost because of the need to find the Jacobians
FU , Fx, Ft, and F−1U . Moreover, from the definition of vector
F in Eq. (6), the Jacobian FU is dense. Therefore, to reduce
the computational cost, we employ the following techniques.

1) Forward difference GMRES method: Equation (7) can
be approximated as a linear equation by using forward
difference GMRES (FDGMRES) to solve it for U̇ . For more
information about FDGMRES, please refer to [15], [17].
FDGMRES is combined with the continuation method for
real-time computation.

2) Continuation method: Sinve the vector U̇ has been
obtained by the FDGMRES method, U(t) can be updated
by integrating U̇ in real time. For more information about
this technique, please refer to [15].

The continuation method and FDGMRES are combined
to form C/GMRES, which is a fast calculation algorithm.
C/GMRES is used to find the solution of the nonlinear
Eq. (6), which can be found without a line search from
Newton’s method and without directly solving nonlinear
Eq. (6). Therefore, it requires much less computational
time [15].

In spite of using C/GMRES to find the solution of Eq. (6),
the weighting matrices in Eq. (4d) must be carefully selected
to obtain good responses. A method for obtaining suitable
weighting matrices is described in the next subsection.

D. Performance index

In this subsection, we discuss how to obtain appropriate
weighting matrices for the performance index. The objective
of the optimal control problem is to find the optimal solution
of the input by minimizing the performance index. The
control input at each time t is determined to minimize the
performance index with horizon length T , as described in
Subsection III-A. To control the position of the system, the
functions in the performance index J given by Eq. (4d) are
chosen as

φ(x) =
1

2
(x− xf )TSf (x− xf ), (9a)

L(x, u) =
1

2
((x− xf )TQ(x− xf ) + (u− uf )TR(u− uf )),

(9b)

where xf denotes the objective state, uf is the objective input
and Sf , Q, and R are weighting matrices. Normally, matrices
Q, R, and Sf are selected such that the response of the

system is satisfactory. However, satisfactory responses are
sometimes very difficult to achieve because it is very difficult
to adjust these three weighting matrices (Sf , Q, and R) at the
same time. To reduce the number of variables that need to
be adjusted, the matrix Sf (terminal weighting matrix) can
be mathematically found by solving the algebraic Riccati
equation; a similar principle was used in [18], [19].

Let us consider an infinite-horizon optimal control prob-
lem with the quadratic cost function

J(u) =

∫ ∞
0

((x−xf )TQ(x−xf )+(u−uf )TR(u−uf ))dt

for the linear system

ẋ = Ax+Bu.

This type of problem is called a linear quadratic regulator
(LQR) problem. The optimal control is obtained as the
state-feedback u = −Kx with the gain matrix given by
K = R−1BTSf . The matrix Sf can be found by solving
the following algebraic Riccati equation:

ATSf + SfA− SfBR−1BTSf +Q = 0. (10)

It is well known that the minimum value of the performance
index is expressed as

min J =

∫ ∞
0

d

dt
(xTSfx)dt =

1

2
xT (0)Sfx(0). (11)

Now, let us consider NMPC with an infinite horizon, i.e.,
T =∞. Then, the performance index can be written as

J =

∫ ∞
t

((x− xf )TQ(x− xf ) + (u− uf )TR(u− uf ))dτ,

=

∫ t+T

t

((x− xf )TQ(x− xf )+

(u− uf )TR(u− uf ))dτ+∫ ∞
t+T

((x− xf )TQ(x− xf )+

(u− uf )TR(u− uf ))dτ.

Applying the basic property of the LQR, Eq. (11), to the
second term of the above equation and assuming that x(t+T )
is close to its original value, the performance index can be
approximated as

J ≈1

2
(x(t+ T )− xf )TSf (x(t+ T )− xf )+

1

2

∫ t+T

t

((x− xf )TQ(x− xf )+

(u− uf )TR(u− uf ))dτ

It can be seen that the terminal-state penalty term (x(t +
T )− xf )TSf (x(t+ T )− xf ) is added to the finite-horizon
performance index. For NMPC, the matrix Sf is found by
solving Eq. (10) offline [20].

293



IV. SIMULATION RESULTS

This section shows results obtained by simulation while
adjusting the weighting matrices R and Q in the performance
index Eq. (9b). The matrix Sf is obtained by solving
Eq. (10). Table I shows the model parameters used in the
simulation.

TABLE I
MODEL PARAMETERS

Symbol Quantity Value
M Cart mass 1 kg
m1 First pendulum mass 0.8 kg
m2 Second pendulum mass 0.5 kg

I1
First pendulum 0.0126 kg m2

moment of inertia

I2
Second pendulum 0.0185 kg m2

moment of inertia
l1 First pendulum length 0.3 m
l2 Second pendulum length 0.45 m

In the simulation, the sampling period is 0.005 s and
the horizon length is divided into 5 steps (N = 5).
The parameters associated with the horizon are chosen as
T = Tf (1 − e−αt), Tf = 1 s, and α = 0.5. Since
the dynamical behaviors of the system to be observed are
x = [x, θ1, θ2, ẋ, θ̇1, θ̇2]T and this simulation is focused on
stabilizing θ1 and θ2, it is important to stabilize the angles of
both pendulums to zero. Therefore, the angles are given the
largest weight. The weighting matrices of the performance
index are chosen as: Q = diag[5, 10, 10, 0, 0, 0] and R = 1.
The objective state is defined as xf = [0, 0, 0, 0, 0, 0]T . The
initial state of the system is x0 = [0, π, π, 0, 0, 0]T . The error
in the optimality condition is represented by the norm of the
function F in Eq. (6), ‖F‖, upon substituting the input and
the current state.

The simulation results were computed on a Windows 8 op-
erating system with a 2.5 GHz Intel Dual-Core i5 CPU and 4
GB of RAM. The simulation code was written in MATLAB.
For faster simulation, the nonlinear equation Eq. (6) was
written in a MEX (MATLAB executable) file, which provides
an interface between MATLAB and subroutines written in
C/C++. The transformation between MATLAB’s M-file to
the MEX file was simply done by using the command mex
in MATLAB.

Figure 2 shows the result obtained using Newton’s method
to solve the nonlinear equation (Eq. (6)) and C/GMRES at
every sampling period. Newton’s method was chosen to solve
the NMPC problem because it is a fundamental method and
widely used to solve nonlinear equations. The results show
that the double inverted pendulum can be swung-up and
stabilized in the upright position for both methods and that
the time responses for both methods are similar except for
the displacement x.

The difference in displacement between C/GMRES and
Newton’s method is caused by C/GMRES, which is a fast
calculation method, combined with a lower weighting value

for the displacement and zero weight for the velocity. To
realize real-time calculation, the accuracy of C/GMRES
must be reduced. Therefore, the slight difference in the cart
velocity will affect the time history of the displacement as
shown in Fig. 2. It can be seen from Fig. 2 that Newton’s
method has a significantly lower error of only about 1×10−7

compared with C/GMRES. The time responses and the error
the of C/GMRES method can be made closer to those of
Newton’s method by reducing the sampling time of NMPC
and the tolerance value in the GMRES method. However,
there is a trade-off between accuracy and computational time.

Fig. 2. Simulation results obtained using Newton’s method (solid lines)
and C/GMRES (dashed lines)

TABLE II
AVERAGE COMPUTATIONAL COST

Method Computational Time per Update (s)
MATLAB MATLAB & MEX

Newton’s Method 0.1314 0.0207
C/GMRES 0.0669 0.0048

Table II shows the computational time per update for New-
ton’s method and the C/GMRES method. Table II also shows
the computational times for M and MEX file. The results
show that the C/GMRES method has a lower computational
cost than Newton’s method, which is further reduced when
a MEX file is used. It can be seen that the computational
cost of C/GMRES with a MEX file is less than the sampling
time of 0.005 s. Therefore, only the C/GMRES method can
be used in real time.

V. CONCLUSIONS

The double inverted pendulum can be swung-up and
stabilized by NMPC. Real-time NMPC can be performed
by applying C/GMRES to solve the NMPC problem. In this
study, the double inverted pendulum was initially at rest

294



in the downward position. Then, NMPC was used to find
the optimal input by optimizing the performance index. The
terminal weighting matrix was chosen by solving the alge-
braic Riccati equation. A continuous-time NMPC problem
was first discretized over a receding horizon, and an NTP-
BVP was formulated to find the sequence of optimal control
inputs. To solve this nonlinear equation, Newton’s method is
conventionally used, which has a large computational cost.
The results showed that the pendulum can be swung-up and
stabilized in a short settling time using NMPC. To realize
real-time computation, the fast computation method called
C/GMRES was applied to solve the NMPC problem, which
was coded in a MATLAB MEX file, and the results showed
that the computational time was significantly reduced to less
than the sampling time. Therefore, C/GMRES can be applied
to solve the NMPC problem in real time.

REFERENCES

[1] T. Sugihara, Y. Nakamura, and H. Inoue, “Real-time humanoid motion
generation through ZMP manipulation based on inverted pendulum
control,” Proceedings of 2002 IEEE International Conference on
Robotics and Automation, vol. 2, pp. 1404–1409, 2002.

[2] A. D. Kuo, “The six determinants of gait and the inverted pendulum
analogy: A dynamic walking perspective,” Human Movement Science,
vol. 26, no. 4, pp. 617–656, 2007.

[3] R. Altendorfer, U. Saranli, H. Komsuoglu, D. Koditschek, H. B.
Brown Jr, M. Buehler, N. Moore, D. McMordie, and R. Full, Evidence
for Spring Loaded Inverted Pendulum Running in a Hexapod Robot.
Springer, 2001.

[4] S. Jadlovská and J. Sarnovsky, “Classical double inverted pendulum–
A complex overview of a system,” Proceedings of IEEE 10th Jubilee
International Symposium on Applied Machine Intelligence and Infor-
matics, pp. 103–108, 2012.

[5] P. Jaiwat and T. Ohtsuka, “Stabilization of vehicle rollover by nonlin-
ear model predictive control,” Proceedings of SICE Annual Conference
2013, pp. 1568–1573, Sept. 2013.

[6] S. C. Peters, J. E. Bobrow, and K. Iagnemma, “Stabilizing a vehicle
near rollover: An analogy to cart-pole stabilization,” Proceedings of
2010 IEEE International Conference on Robotics and Automation, pp.
5194–5200, May 2010.

[7] E. Lee and J. Perkins, “Comparison of techniques for stabilization
of a triple inverted pendulum.” [Online]. Available: http://www.cc.
gatech.edu/∼mstilman/class/RIP08/FINAL PROJECTS/ErikJim.pdf

[8] C. Luo, D. Hu, Y. Pang, X. Zhu, and G. Dong, “Fuzzy control
of a quintuple inverted pendulum with the LQR method and 2-ary
fuzzy piecewise interpolation function,” Proceedings of 45th IEEE
Conference on Decision and Control, pp. 6307–6312, 2006.

[9] A. Bogdanov, “Optimal control of a double inverted pendulum on a
cart,” OGI School of Science and Engineering, OHSU, 2004.

[10] N. Singh and S. K. Yadav, “Comparison of LQR and PD controller for
stabilizing double inverted pendulum system,” International Journal
of Engineering, vol. 1, no. 12, pp. 69–74, 2012.

[11] T. Henmi, M. Deng, and A. Inoue, “Swing-up control of a serial
double inverted pendulum,” Proceedings of 2004 American Control
Conference, vol. 5, pp. 3992–3997, 2004.

[12] J. Awrejcewicz, G. Wasilewski, G. Kudra, and S. Reshmin, “An
experiment with swinging up a double pendulum using feedback
control,” Journal of Computer Systems Sciences International, vol. 51,
no. 2, pp. 176–182, 2012.

[13] K. Graichen, M. Treuer, and M. Zeitz, “Swing-up of the double pendu-
lum on a cart by feedforward and feedback control with experimental
validation,” Automatica, vol. 43, no. 1, pp. 63–71, 2007.

[14] T. Glück, A. Eder, and A. Kugi, “Swing-up control of a triple
pendulum on a cart with experimental validation,” Automatica, 2013.

[15] T. Ohtsuka, “A continuation/GMRES method for fast computation of
nonlinear receding horizon control,” Automatica, vol. 40, pp. 563–574,
2004.

[16] A. E. Bryson and Y.-C. Ho, Applied Optimal Control. Taylor and
Francis, 1975.

[17] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations.
Society for Industrial and Applied Mathematics, 1995.

[18] L. Magni, G. D. Nicolao, L. Magnani, and R. Scattolini, “A stabiliz-
ing model-based predictive control algorithm for nonlinear systems,”
Automatica, vol. 37, no. 9, pp. 1351–1362, 2001.

[19] L. Magni, R. Scattolini, and K. Aström, “Global stabilization of the
inverted pendulum using model predictive control,” in Proceedings of
the 15th IFAC World Congress, 2002, p. 1554.

[20] H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability,” Automatica,
vol. 34, no. 10, pp. 1205–1217, 1998.

295




