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Abstract— Proportional-Integral-Derivative (PID) controllers
are the most employed controllers in industry. As one of the
PID parameter tuning methods, partial model matching method
is proposed by Kitamori. In this method, we can get the PID
parameters calculated systematically. However, if we cannnot
get the enough information about controlled object in advance,
the performance of sysytem may become bad. So, in this paper,
we propose an adaptive I-PD control system and show the
effectiveness by the experiment using 2-DOF Serial Flexible
Link Robot.

I. INTRODUCTION

Although various control schemes based on modern con-
trol theory are studied, in the industrial world, the PID
control based on classical control theory has still accounted
for the 80 percent or more. Its reasons are, the structure
of PID control is easy, it is connecting each operation called
proportionality, integration, and differentiation to the concept
of future, in the past, now, and it is mentioned that it is easy
to understand intuitively.

During the past five decades, a comprehensive PID tuning
literature has been developed. Roughly speaking, there are
two different approaches to obtain PID and PID-like con-
troller parameters.

First, tune the parameters of the PID structure by one
of the following available tuning techniques: Ziegler-Nichol
method[3], the CHR method[4], internal-model-control-
based methodbib1, optimization method[6], and gain-phase
margin method[7]. For single-input/single-output (SISO)
plants, satisfactory control can be achieved by using estab-
lished tuning rules.

Second, assume that the controller has a PID structure, and
find the PID parameters by using some well-known optimiza-
tion methods, e.g., H∞[8], mixed H2/H∞[9], and semidefinite
programming approaches[10]. These methods can be used to
obtain the PID controller parameters such that the controllers
have good time-domain performance and frequency-domain
robustness. The main problem with this approach is that
the resulting controllers are statespace controllers of high-
order rather than low-order controllers with a fixed structure.
Although one can reduce or approximate it with a PID-like
structure, it is not so far the reduced-order controller.

Although there are many methods of a preparation of a
typical PID parameter, at the actual operation spot, it is
performed by an engineer’s trial and error in many cases.
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There is a partial model matching method[11] proposed
by Kitamori by making this PID parameter adjustment into
the way of performing systematically. It is the characteristic
of this technique to match sequentially from a low order
term in the feedback system and reference model of a
controlled object, and to interrupt matching for the suitable
degree according to the complexity of the control device.
Since matching is not necessarily completely performed
to the highest term, it is called a partial model matching
method. The purpose of the control design in this way is as
follows. (i) Making steady-state error to zero. (ii) Having
a suitable damping characteristic. (iii) After fulfilling the
above-mentioned characteristic, rise time becomes the min-
imum. However, since this partial model matching method
uses a fixed PID parameter, when the information on the
controlled object obtained by beforehand has uncertainty,
the above-mentioned control performance may be unable to
demonstrate it.

So, in this paper, we propose an adaptive I-PD control
system to overcome the model uncertainty. And we show
the effectiveness of proposed adaptide tuning method of PID
parameters by the experiment using 2-DOF Serial Flexible
Link Robot.

II. PROBLEM STATEMENT

Consider the SISO, linear time-invariant systems in Fig. 1
described by

y(t) = G(s)u(t) (1)

where u(t),y(t)∈ℜ are the control input and the plant output
respectively. Next, we choose the following reference model.

yM(t) = GM(s)r(t) (2)

where r(t),yM(t) ∈ℜ are the reference input and the refer-
ence model output respectively. The control objective is to

Fig. 1. Control system

design u(t) such that asymptotically y(t) tracks yM(t) with
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all generated signals remaining bounded. That means when
we define the tracking error as

e(t) = r(t)− y(t) (3)
ε(t) = y(t)− yM(t) (4)

the control objective is to make the tracking error to go to
zero, In other words,

lim
t→∞

ε(t) = 0 (5)

III. PARTIAL MODEL MATCHING METHOD

A. Denominator Series Expression

Although there are various methods in how to choose
a reference model, the Kitamori’s method[12] is adopted
here. First, the mathematical model of a controlled object
is denoted by denominator series expression.

G(s) =
b(s)
a(s)

=
b0 +b1s+b2s2 +b3s3 + · · ·
a0 +a1s+a2s2 +a3s3 + · · ·

=
1

β0 +β1s+β2s2 +β3s3 + · · ·

=
1

β (s)
(6)

where we can calculate each coefficient as:

β0 =
a0

b0
(7)

β1 =
a1−β1

b0
(8)

β2 =
a2−b1β1−b2β0

b0
(9)

β3 =
a3−b1β2−b2β1−b3β0

b0
(10)

...

βi =
ai−b1βi−1−b2βi−2−·· ·−biβ0

b0
(11)

Next, a reference model is similarly given by the model
of denominator series expression.

GM(s) =
1

1+σs+α2(σs)2 +α3(σs)3 + · · ·

=
1

α(s)
(12)

The σ in the above model is a time-scaling parameter, at
the same time, and a measure of response time because it
is the first-order moment of the impulse response, that is,
an average delay of the impulse response. The smaller the
value of σ is, the higher the response speed is. The value
of σ is left indeterminate in the model because the speed of
designed system depends upon the speed of controlled object
and ability of the compensator/controller used. The value is
determined in the course of matching.

The αi’s are parameters to adjust the damping characteris-
tics of designed system. Some recommendable sets of values
for αi’s are known. A set is given as

{α2,α3,α4, · · ·}= {0.5,0.15,0.03, · · ·} (13)

which gives rise to step responses of about 10 percent
overshoot with good damping[12]. Some others are

{α2,α3,α4, · · ·}= {0.425,0.0975,0.014344, · · ·} (14)
{α2,α3,α4, · · ·}= {0.375,0.0625,0.003906, · · ·} (15)

The former, proposed by Shigemasa[13], gives rise to quicker
step responses with negligi ble overshoot.The latter is the
fourth order critical damping.

B. Control Law
Let’s consider the system expressed with the denominator

expansion form in Fig. 2. The control objective is to design

Fig. 2. I-PD type control system

u(t) such that asymptotically y(t) tracks yM(t) with all
generated signals remaining bounded. We want to calculate
the transfer function W (s) from r(t) to y(t). From block
diagram in Fig. 2,

y(t) = G(s)
[

k
s
{r(t)− y(t)}− f (s)y(t)

]
(16)

where

f (s) = f0 + f1s+ f2s2 + f3s3 + · · · (17)

So the closed-loop transfer function W (s) is

W (s) =
1

1+ s
k{β (s)+ f (s)}

(18)

From (12) and (18), if the following equation is satisfied,
then W (s) = GM(s).

α(s) = 1+
s
k
{β (s)+ f (s)} (19)

This model matching condition is an identical equation for
s, and can be rewritten as:

β0 + f0

k
= σ (20)

β1 + f1

k
= α2σ

2 (21)

β2 + f2

k
= α3σ

3 (22)

β3 + f3

k
= α4σ

4 (23)

...
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And now we can obtain the error equation.

ε(t) =
s

kα(s)

[
u(t)−θ

T
ζ (t)

]
(24)

where

θ = [k, f0, f1, f2, · · · ]T (25)

ζ (t) =

[
1
s

e(t),−y(t),−ẏ(t), · · ·
]T

(26)

Hence, the control law is the following u(t) when the
parameters of plant are known.

u(t) = θ
T(t)ζ (t) (27)

1) I-P Control: When we design I-P control system, let
f1, f2 = 0 in eq(20)-(22),

β0 + f0 = kσ (28)
β1 = kα2σ

2 (29)
β2 = kα3σ

3 (30)

From these equations, we can obtain the following control
parameters.

σ =
α2β2

α3β1
(31)

k =
β1

α2σ2 (32)

f0 = kσ −β0 (33)

2) I-PD Control: Next, when we design I-PD control
system, let f2, f3 = 0 in eq(20)-(23),

β0 + f0 = kσ (34)
β1 + f1 = kα2σ

2 (35)
β2 = kα3σ

3 (36)
β3 = kα4σ

4 (37)

So, the control parameters are caluculated as follows.

σ =
α3β3

α4β2
(38)

k =
β2

α3σ3 (39)

f0 = kσ −β0 (40)
f1 = kα2σ

2−β1 (41)

IV. ADAPTIVE I-PD CONTROL DESIGN

Figure 3 shows the adaptive control system. When the
plant parameters are unknown, true parameters θ are re-
placed by the adjustable parameters θ̂(t). Controller param-
eters in θ̂(t) provided by the adaptation law.

u(t) = θ̂
T(t)ζ (t) (42)

ε(t) =
s

kα(s)

[
θ̃

T(t)ζ (t)
]

(43)

θ̃(t) = θ̂(t)−θ (44)

However, the choice of adaptation law given by

˙̂
θ(t) =−Γζ (t)ε(t) (45)

(46)

cannot be used, because now the error transfer function s
α(s)

is no longer strictly positive real. A famous technique called
error augmentation can be used to avoid this difficulty in
finding an adaptation law for this error model. The basic
idea of the technique is to consider a so-called augmented
error ε ′(t) which correlates to the parameter error in a more
desirable way than the tracking error ε(t).

First, let us define an auxiliary error η(t) by

η(t) = θ̂
T(t)

[
s

α(s)
ζ (t)

]
− s

α(s)

(
θ̂

T(t)ζ (t)
)

(47)

It is useful to note two features about the auxiliary error.
First, this error η(t) can be computed on-line, since the
estimated parameter vector θ̂(t) and the signal vector ζ (t)
are both available on-line manner. Secondly, this error η(t)
is caused by time-varying nature of the estimated parameters
θ̂(t), in the sense that when the estimated parameters θ̂(t)
is replaced by the constant parameter vector, then we have
η(t) = 0.

This also implies that the auxiliary error can be written

η(t) = θ̃
T(t)

[
s

α(s)
ζ (t)

]
− s

α(s)

(
θ̃

T(t)ζ (t)
)

(48)

Now let us define an augmented error ε ′(t), by combining
the tracking error ε(t) with the auxiliary error η(t) as

ε
′(t) = ε(t)+ ĥ(t)η(t) (49)

h =
1
k

(50)

where ĥ(t) is a time-varying parameter to be determined by
adaptation. Note that ĥ(t) is not a controller parameter, but
only a parameter used in forming the new error ε ′(t).

ε
′(t) = ε(t)+ ĥ(t)η(t)

=
sh

α(s)

[
θ̃

T(t)ζ (t)
]
+ ĥ(t)η(t)+hη(t)−hη(t)

=
sh

α(s)

[
θ̃

T(t)ζ (t)
]
+ ĥ(t)η(t)

+h
(

θ̃
T(t)

[
s

α(s)
ζ (t)

]
− s

α(s)

(
θ̃

T(t)ζ (t)
))

−hη(t)

= hθ̃
T(t)

[
s

α(s)
ζ (t)

]
+ h̃(t)η(t) (51)

We obtain

ε
′(t) = hθ̃

T(t)ξ (t)+ h̃(t)η(t) (52)

ξ (t) =
s

α(s)
ζ (t) (53)

This implies that the augmented error can be linearly parame-
terized by the parameter errors θ̃(t) and h̃(t). Then a number
of standard techniques such that the gradient method or the
least-squares method can be used to update the parameters.
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Using the gradient method with normalization, the con-
troller parameters θ̂(t) and the parameter ĥ(t) for forming
the augmented error are updated by

˙̂
θ(t) =− Γξ (t)ε ′(t)

ρ +ξ T(t)ξ (t)
(54)

˙̂h(t) =− γη(t)ε ′(t)
ρ +ξ T(t)ξ (t)

(55)

where Γ= ΓT > 0, γ > 0 are adaptive gains, and ρ is positive
number.

Fig. 3. Model reference adaptive control

V. STABILITY ANALYSIS

Consider the function

V =
1
2

hθ̃
T(t)Γ−1

θ̃(t)+
1
2γ

h̃2(t) (56)

as a Lyapunov candidate for the system. The time derivative
V̇ is calculated as

V̇ = hθ̃
T(t)Γ−1 ˙̃

θ(t)+
1
γ

h̃(t) ˙̃h(t)

= −hθ̃
T(t)

ξ (t)ε ′(t)
ρ +ξ T(t)ξ (t)

− h̃(t)
η(t)ε ′(t)

ρ +ξ T(t)ξ (t)

= −hθ̃ T(t)ξ (t)+ h̃(t)η(t)
ρ +ξ T(t)ξ (t)

ε
′(t)

= − ε ′2(t)
ρ +ξ T(t)ξ (t)

(57)

Therefore, estimated error θ̃(t) and h̃(t) are bounded.

VI. EXPERIMENT OF 2-DOF FLEXIBLE LINK ROBOT

A. 2-DOF Serial Flexible Link Robot

Controlled object is 2-DOF Serial Flexible Link Robot in
fig.4. We define the first (shoulder) driving shaft absolute
angular position as φ1, the second (elbow) driving shaft
angular position relative to link 1 as φ2, the first flexible link
relative end-effector angular position as q1, and the second
flexible link end-effector angular position relative to link 1
as q2 like in fig.5. At this time, the linear decoupled model
for every link is as follows. First, the state vector about the
1st link is defined as

xT
1 =

[
φ1(t),q1(t),

d
dt

φ1(t),
d
dt

q1(t)
]

(58)

Fig. 4. 2-DOF Serial Flexible Link Robot

Fig. 5. Definition of φ1,φ2,q1,q2

Since an input u1 is current to the motor of 1st link,

u1 = I1 (59)

At this time, the state equation is described as
d
dt

x1 = A1x1 +B1u1 (60)

y1 = CT
1 x1 (61)

where

A1 =


0 0 1 0
0 0 0 1
0 Ks1

J11
−B11

J11

B12
J11

0 − (J11+J12)Ks1
J11J12

B11
J11

−B12(J11+J12)
J11J12

 , (62)

BT
1 =

[
0,0,

Kt1

J11
,−Kt1

J11

]
, (63)

and

CT
1 = [1,0,0,0] . (64)

Also, the state vector about the 2nd link is defined as

xT
2 =

[
φ2(t),q2(t),

d
dt

φ2(t),
d
dt

q2(t)
]

(65)
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Since an input u2 is current to the motor of 2nd link,

u2 = I2 (66)

At this time, the state equation is described as

d
dt

x2 = A2x2 +B2u2 (67)

y2 = CT
2 x2 (68)

where

A2 =


0 0 1 0
0 0 0 1
0 Ks2

J21
−B21

J21

B22
J21

0 − (J21+J22)Ks2
J21J22

B21
J21

−B22(J21+J22)
J21J22

 , (69)

BT
2 =

[
0,0,

Kt2

J21
,−Kt2

J21

]
, (70)

and

CT
2 = [1,0,0,0] . (71)

B. Experimental result

Since each link was decoupled respectively, we consider
the controlled object as single-input/single-output systems.
The PID parameter was set as θ̂1(0) = θ̂2(0) = [110.1]T at
the beginning noting that the parameter of the controlled
object was unknown. From the second time on, the final value
of last experiment is used as the initial value of adaptive
parameters. The result at the time of giving a step signal as
a reference input is shown Fig. 6-9. Here, control parameters
are chosen as Γ = I,γ = 1,ρ = 0.1.
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Fig. 6. Control result of 1st trial
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Fig. 7. Control result of 2nd trial
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Fig. 8. Control result of 3rd trial
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Fig. 9. Control result of 4th trial

From the experiment result, the PID gains θ̂1(t), θ̂2(t) are
gradually tuned, and finally, good tracking performance is
achieved.

VII. CONCLUSION

In this paper, we propose an adaptive I-PD control sys-
tem to overcome the model uncertainty. And we show the
effectiveness of proposed adaptide tuning method of PID
parameters by the experiment using 2-DOF Serial Flexible
Link Robot.
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