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Abstract— This paper presents iterative learning control
(ILC) schemes for batch-varying references. Generally, refer-
ence or target trajectory must be identical for all iterations
to implement the ILC. However, references can be changed
in dynamic systems such as robotics and chemical processes
according to cycle or batch. ILC schemes for batch-varying
references are proposed in three forms which are inverse of
model-based ILC (I-ILC), quadratic-criterion-based ILC (Q-
ILC), and general norm optimal ILC form. These control
schemes are studied for discrete linear time invariant (LTI)
system. A numerical example is provided to demonstrate the
performance of the proposed algorithms.

I. INTRODUCTION

Iterative learning control (ILC) is an effective control tech-
nique for improving tracking performance of batch process
under model uncertainty. ILC was originally introduced in
1984 by Arimoto et al. for robot manipulators [1], then ILC
has been implemented in many industrial processes such
as semiconductor manufacturing [2] and chemical processes
[3]. All the previous studies on ILC have only considered
the batch-process with identical reference trajectories for all
iterations.

In this paper, we propose ILC schemes for batch-
varying references and present three modified ILC forms for
batch-varying references case: inverse of model-based ILC,
quadratic-criterion-based ILC, and general norm optimal
ILC. The most important issue in the proposed ILC schemes
is to estimate the precise model. We cannot guarantee a
perfect convergence without a perfect model. The difference
between the current desired input and next desired input
with respect to each different reference trajectory should be
required. For the issue, numerical algorithms for state-space
subspace system identification (N4SID) is used at the end of
each iteration to estimate a precise model.

The remainder of the paper is organized as follows. In
Section II, lifted system representation and a brief description
of the general ILC schemes are introduced. In Section III,
ILC schemes for batch-varying references are presented and
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the reason why a perfect model is needed for convergence
is also discussed. Finally, numerical illustration is provided
in Section IV.

II. PRELIMINARY

Consider the following discrete linear time-invariant sys-
tem which operates on an interval t ∈ [0,N]:

xk(t +1) = Axk(t)+Buk(t)
yk(t) =Cxk(t)

(1)

where xk ∈ Rn is a state vector; uk ∈ Rm is an input vector;
yk ∈ Rp is an output vector; t is a time index; k is a batch
index; and the matrices A,B, and C are real matrices of
appropriate dimensions and assumed to be time-invariant.
Since finite time intervals [0,N] are considered in ILC, this
system can be rewritten as a lifted system:

yk = Gpuk (2)

with xk(0) = 0 and the plant matrix Gp =R(pN)×(mN) defined
as

Gp =


CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...
CAN−1B CAN−2B · · · CB

 (3)

and the vectors yk,y0 ∈ RpN , and uk ∈ RmN are defined as

yk =
[
yT

k (1) yT
k (2) · · · yT

k (N)
]T (4)

uk =
[
uT

k (0) uT
k (1) · · · uT

k (N−1)
]T (5)

The system matrix Gp is a markov matrix which is a lower
triangular Toeplitz matrix [4].

A. Inverse of Model-based ILC (I-ILC)

The most general input update law of the ILC is repre-
sented by

uk+1 = uk +Hek (6)

where H is a learning gain matrix, ek = r− yk, and r is a
reference trajectory [5].

Theorem 1 [6] Consider the linear system (2) and the ILC
controller (6). Then, the ILC system is monotonic convergent
if H is chosen such that ‖I−GpH‖< 1.

Proof: The error at the (k+1)-th batch is derived as

r− yk+1 = r−Gpuk+1

= r−Gp(uk +H(r− yk))

= (I−GpH)(r− yk)

(7)
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Then, it leads to the inequality

‖ek+1‖ ≤ ‖I−GpH‖‖ek‖ (8)

Consequently, the monotonic convergence of error is guar-
anteed if ‖I−GpH‖< 1.

In this case, inverse of model matrix G is generally chosen
as H, that is, H = G−1. However, the learning gain matrix H
based on the model inverse G−1 becomes high-sensitive to
high-frequency components in ek. Therefore, excessive input
change can occur.

B. Quadratic-criterion-based ILC (Q-ILC)

Q-ILC [7], [8] was proposed to use the following objective
which has a penalty term on the input change between two
adjacent batches:

min
∆uk+1

J =
1
2
{eT

k+1Qek+1 +∆uT
k+1R∆uk+1} (9)

where Q and R are positive-definite matrices and ∆uk+1 =
uk+1 − uk. By calculating the derivative of J with respect
to ∆uk+1, we obtain the following input update law of the
Q-ILC:

uk+1 = uk +HQek (10)

where

HQ = (GT QG+R)−1GT Q (11)

Although the control law (10) is derived using the plant
matrix Gp, it is applied using the model matrix G because
we do not know the precise plant matrix.

Theorem 2 [7] Consider the linear system (2) and the Q-
ILC controller (10). Then, the system is monotonic conver-
gent if G is chosen such that ‖I−GpHQ‖< 1.

Proof: The input-output relationship between k-th and
k+1-th batch is written as

yk+1 = yk +Gp(uk+1−uk) (12)

Then, the following expression can be derived:

ek+1 = ek−Gp∆uk+1 (13)

By substituting eq. (10) for ∆uk+1 in eq. (13), we can obtain
the following expression:

ek+1 = (I−Gp(GT QG+R)−1GT Q)ek (14)

Then, it leads to the inequality

‖ek+1‖ ≤ ‖(I−Gp(GT QG+R)−1GT Q)‖‖ek‖ (15)

Therefore, the monotonic convergence of error is guaranteed
if ‖I−GpHQ‖< 1.

III. ITERATIVE LEARNING CONTROL FOR
BATCH-VARYING REFERENCES

In the conventional ILC formulation, the output yk con-
verges to the reference r for all batches. Hence, it is possible
to make the output converge as long as we know the values
of the error and the model which satisfies the convergence
condition. If the reference trajectories are varied in batches,
we should know not only the values of the error but also
the input variation necessary to move the output from the
current reference rk to the next reference rk+1. The desired
input of (k+1)-th batch can be expressed as the following
form:

uk+1 = uk +(ur(k)−uk)+(ur(k+1)−ur(k)) (16)

where ur(k) is the desired input for current reference rk and
ur(k+1) is the desired input for next reference rk+1. With the
plant description of yk = GPuk, eq. (16) can be rewritten as:

uk+1 = uk + G−1
p (rk− yk)︸ ︷︷ ︸

convergence term

+ G−1
p (rk+1− rk)︸ ︷︷ ︸

re f erence tracking term

(17)

In the ILC problem, it is assumed that the plant matrix Gp
is not known exactly or Gp is not invertible. Hence, we
introduce learning gain matrices to obtain input update law
of the ILC for batch-varying references:

uk+1 = uk +Hc(rk− yk)+Hr(rk+1− rk) (18)

where Hc is the learning gain matrix for convergence and Hr
is the learning gain matrix for reference tracking.

A. I-ILC for Batch-varying References

For using the ILC algorithm for batch-varying references,
we should choose two learning gain matrices, Hc and Hr.

Theorem 3 Consider the linear system (2) and the ILC
controller in (18). Then, in the ILC system, ek→ 0 as k→∞

if Hc is chosen such that ‖I−H−1
r Hc‖< 1 and Hr is chosen

such that ‖H−1
r G−1

p − I‖= 0.

Proof: Pre-multiplying the input update law (18) by the
plant matrix Gp yields

Gpuk+1 = Gpuk +GpHc(rk− yk)+GpHr(rk+1− rk) (19)

then, the following can be derived by using yk = Gpuk.

yk+1 = yk +GpHc(rk− yk)+GpHr(rk+1− rk) (20)

Adding GpHryk+1 +GpHryk to eq. (20) yields

yk+1 +GpHryk+1 +GpHryk = yk +GpHc(rk− yk)

+GpHr(rk+1− rk)+GpHryk+1 +GpHryk
(21)

then, this equation can be rearranged to:

GpHrek+1 =(GpHr−GpHc)ek+(I−GpHr)(yk+1−yk) (22)

From this, it follows that

ek+1 = (I−H−1
r Hc)ek +(H−1

r G−1
p − I)∆yk+1 (23)
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where ∆yk+1 = yk+1− yk. Then, it leads to the inequality

‖ek+1‖ ≤‖I−H−1
r Hc‖‖ek‖

+‖H−1
r G−1

p − I‖‖∆yk+1‖
(24)

In this case, ∆yk+1 cannot be 0 since the references can
vary for all batches. Hence, H−1

r should equal to Gp so that
‖H−1

r G−1
p − I‖‖∆yk+1‖= 0. Then, the convergence condition

follows that
‖ek+1‖ ≤ ‖I−GpHc‖‖ek‖ (25)

Consequently, the error ek→ 0 as k→ ∞ if ‖I−GpHc‖ ≤ 0
and H−1

r = Gp.

B. Q-ILC for Batch-varying References

In many control applications, smooth control are prefer-
able for stable operation. Therefore, we need to obtain
control law of the Q-ILC form, which has the quadratic
objective function involving both regulation error and input
change. The Q-ILC is the special case of norm optimal ILC.
First, we need to derive ek+1 to use the following objective:

min
∆uk+1

J =
1
2
{eT

k+1Qek+1 +∆uT
k+1R∆uk+1} (26)

The input-output relationship between two adjacent batches
is

yk+1 = yk +Gp∆uk+1 (27)

then, adding (rk+1 + rk) to eq. (27), the following error
dynamics can be obtained.

ek+1 = ek−Gp∆uk+1 + rk+1− rk (28)

substituting eq. (28) for ek+1 in eq. (26) and applying
∂J/∂∆uk+1 = 0 yield

uk+1 =uk +(GT
p QGp +R)−1GT

p Qek

+(GT
p QGp +R)−1GT

p Q∆rk+1
(29)

where ∆rk+1 = rk+1− rk. Since the precise plant model is
hardly known, we use G instead of Gp. Then, we have the
following input update law of the Q-ILC for batch-varying
references.

uk+1 =uk +(GT
c QGc +R)−1GT

c Qek︸ ︷︷ ︸
convergence term

+(GT
r QGr +R)−1GT

r Q∆rk+1︸ ︷︷ ︸
re f erence tracking term

(30)

Even if we formulate the input update law (30) without any
assumption about a basic form of control law, eq. (30) is the
same form as eq. (18) which was the input update law first
introduced. The input update law can be simply expressed
in the following form:

uk+1 = uk +HQcek +HQr ∆rk+1 (31)

Theorem 4 Consider the linear system (2) and the Q-ILC
controller (31). Then, in the system, ek→ 0 as k→∞ if HQc
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Fig. 1. Simulation results of I-ILC for batch-varying references.

is chosen such that ‖I−GpHQc‖ ≤ 1 and HQr is chosen such
that ‖I−GpHQr‖= 0.

Proof: The following expression can be obtained by
using eqs. (27), (28) and (29).

ek+1 = (I−GpHQc)ek +(I−GpHQr)∆rk+1 (32)

It leads to the inequality

‖ek+1‖ ≤ ‖I−GpHQc‖‖ek‖+‖I−GpHQr‖‖∆rk+1‖ (33)

Hence, the error ek→ 0 as k→∞ if ‖(I−GpHQc)‖ ≤ 1 and
H−1

Qr
= Gp

C. General norm optimal ILC for batch-varying references

General norm optimal ILC can also minimize control
effort by adding penalty term on the input using the following
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Fig. 2. Simulation results of Q-ILC for batch-varying references.

objective function [9].

min
uk+1

J =
1
2
{eT

k+1Qek+1 +∆uT
k+1R∆uk+1 +uT

k+1Suk+1} (34)

Substituting eq. (28) for ek+1 in eq. (34) and applying
∂J/∂uk+1 = 0 yield

uk+1 =(GT
c QGc +R+S)−1(GT

c QGc +R)uk

+(GT
c QGc +R+S)−1GT

c Qek

+(GT
r QGr +R+S)−1GT

r Q∆rk+1

(35)

This input update law can be simply expressed in the
following form:

uk+1 = HNuuk +HNcek +HNr ∆rk+1 (36)
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Fig. 3. Simulation results of general norm optimal ILC for batch-varying
references.

IV. NUMERICAL ILLUSTRATION

For illustrating performance of the proposed algorithms,
the true process Gp and the nominal model G are employed
as follows.

Gp(s) =
0.8

(6s+1)(4s+1)
(37)

G(s) =
1.5

(8s+1)(2s+1)
(38)

Note that there are considerable model errors in the steady
state gain as well as in the dynamic gain. We use r1 for
the first input signal u1, that is, u1 = r1. For applying
the proposed ILC, we should estimate the true process Gp
for reference tracking term update in eqs. (18) and (30).
In this study, we use the numerical algorithms for state
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Fig. 4. Errors and control efforts of each ILC input update law.

space subspace system identification (N4SID) [10]. At the
end of each iteration, state-space model is estimated by
the using input-output data of previous iteration. Then, this
model is used for reference tracking term. Fig. 1 shows the
performance of I-ILC for batch-varying references. While the
outputs converge to each reference, the input signals show
severe oscillations and spikes. In Fig. 2, the performance of
Q-ILC for batch-varying references is presented. In this case,
we used Q = I and R = 0.01I. The input signals are smooth
even if the result shows the similar performance. Fig. 3 shows
the results of norm optimal ILC. In this case, we used Q = I
and R = S = 0.01I. Owing to the penalty terms, the control
efforts decreased as shown in Fig. 4. The proposed ILC
method has a limitation of convergence as shown in Fig.
5 because identification method cannot estimate the plant
precisely. Therefore, the performance of the proposed ILC
depends on the accuracy of the estimated model.

ACKNOWLEDGMENT

This research was supported by Dongjin Semichem Cor-
poration (grant number 0458-20130026).

REFERENCES

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
robots by learning,” Journal of Robotic Systems, vol. 1, no. 2, pp.
123–140, 1984.

5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

Iteration number

||e||

 

 

||e|| of Q−ILC for batch−varying references

||e|| of Q−ILC for the same references

Fig. 5. Errors of Q-ILC for the same references and Q-ILC for batch-
varying references.

[2] J. X. Xu, Y. Q. Chen, T. H. Lee, and S. Yamamoto, “Terminal iterative
learning control with an application to RTPCVD thickness control,”
Automatica, vol. 35, no. 9, pp. 1535–1542, 1999.

[3] M. Mezghani, G. Roux, M. Cabassud, M. W. Le Lann, B. Dahhou,
and G. Casamatta, “Application of iterative learning control to an
exothermic semibatch chemical reactor,” IEEE Transactions on Con-
trol Systems Technology, vol. 10, no. 6, pp. 822–834, 2002.

[4] N. Amann, D. H. Owens, and E. Rogers, “Iterative learning control
for discrete-time systems with exponential rate of convergence,” IEE
Proceedings-Control Theory and Applications, vol. 143, no. 2, pp.
217–224, 1996.

[5] K. L. Moore, M. Dahleh, and S. P. Bhattacharyya, “Iterative learning
control - a survey and new results,” Journal of Robotic Systems, vol. 9,
no. 5, pp. 563–594, 1992.

[6] K. L. Moore, Y. Q. Chen, and V. Bahl, “Monotonically convergent
iterative learning control for linear discrete-time systems,” Automatica,
vol. 41, no. 9, pp. 1529–1537, 2005.

[7] K. S. Lee, W. C. Kim, and J. H. Lee, “Model-based iterative learning
control with quadratic criterion for linear batch processes,” Journal of
Control, Automation and Systems Engineering, vol. 3, pp. 148–157,
1996.

[8] J. H. Lee, K. S. Lee, and W. C. Kim, “Model-based iterative learning
control with a quadratic criterion for time-varying linear systems,”
Automatica, vol. 36, no. 5, pp. 641–657, 2000.

[9] K. L. Barton and A. G. Alleyne, “A norm optimal approach to time-
varying ILC with application to a multi-axis robotic testbed,” IEEE
Transactions on Control Systems Technology, vol. 19, no. 1, pp. 166–
180, 2011.

[10] P. Vanoverschee and B. Demoor, “N4SID - subspace algorithms
for the identification of combined deterministic stochastic-systems,”
Automatica, vol. 30, no. 1, pp. 75–93, 1994.

277




