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Abstract— Against sensor failures, this paper presents a new
design method for a self-repairing nonlinear control system
(SRNCS). The proposed system can automatically replace the
failed sensor with healthy backup if the sensor failure is
found. The nonlinear detection filter guarantees exact and
early fault detection, and the failure can be detected within
a finite time prescribed by a design parameter of the filter.
Also, in this paper, the proposed SRNCS is applied to a well-
known continuous stirred-tank reactor, and the effectiveness is
confirmed through several numerical simulations.

I. INTRODUCTION

Sensor failure often causes serious damage to system
stability and control performance. In order to recover from
failure fundamentally, control systems ought to find failures
and replace the failed sensors with the healthy ones. Hence,
such a self-repairing function should be provided against
failures in advance.

To realize self-repairing, fault detectors are needed. A
large number of design methods for fault detectors have been
developed. From the viewpoint of reliability, the determinis-
tic approaches to fault detection might be preferred to ensure
exact fault detection [1], [2], [3]. However, in many of them,
mathematical models of plants are often exploited to design
the detection filters. This unfortunately, raises the problem
of the complexities of the constructed detection filters. In
addition, if there is a slight mismatch between actual and
estimated models, then exact fault detection cannot be guar-
anteed theoretically.

In the framework of the self-repairing control, our previous
works have developed a new design concept of the detection
filter against a stuck-type sensor failures [4]. The detection
filter has a finite escape time in only faulty situation. Hence,
just monitoring the filtered signal makes it possible to find the
failures exactly. Furthermore, by choosing the finite escape
time, the detection time can be shortened arbitrarily. Also,
because the detection filter is of the first order, the structure
of the overall fault-tolerant control system does not depend
on the plant order but also becomes extremely simple.

However, the preceding detection filter has parameters on
plants explicitly, the precise information about plants are
necessary to design the filter. To solve this problem, this
paper presents a new design method for a self-repairing
nonlinear control system (SRNCS). The nonlinear detection
filter presented here, contains plant parameters implicitly, and
so rough and few information is required to construct the
filter and the control system. Of course, it can guarantee
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exact and early fault detection, and the failure can be detected
within a finite time prescribed by a design parameter of the
filter.

Furthermore, in this paper, the proposed SRNCS is applied
to a well-known continuous stirred-tank reactor (CSTR)
[7], [8], and the effectiveness is confirmed through several
numerical simulations.

In this paper, the sign function is defined as follows:

sgn[e] =
{

1 (e ≥ 0)
−1 (e < 0)

This definition is slightly different from the ordinary one.

II. PROBLEM STATEMENT

Consider the following minimum-phase system of n ∈ I+-
th order and the relative degree one.

ΣP : ẏ = ay + bu + hT z

ż = Fz + gy (1)

where y ∈ R is the actual output, and u : R+ →
R is the control input. The above representation can be
obtained by transforming the state-space equation of the
plant. From the minimum-phase property, the system matrix
F ∈ R(n−1)×(n−1) is a stable matrix (all eigenvalues lie in
the left half complex plane) [5], [6].

Here, we define the error e : R+ → R by

e , r − y (2)

where r : R+ → R is the reference input whose time
derivative ṙ is bounded. In this paper, the tracking problem
is considered, that is, the control objective is to make the
preceding error e small in the practical sense.

To measure the actual output y, we prepare the two
sensors; one is the primary sensor ]1, and the other is the
backup ]2 for sensor-repairing. Then the feedback signal
yS : R+ → R is given by

yS =
{

y1 (t ≤ tD)
y2 (t > tD) (3)

where yi ∈ R (i = 1, 2) is the output signal measured by the
sensor ]i, and tD ∈ R+ is the detection time which will be
defined later. The primary sensor ]1 is usually utilized, and
replaced with the backup ]2 if the failure is detected. Because
of “cold standby”, the backup (spare) sensor is maintained
to be healthy out of the control loop until it is activated and
inserted.

From (3), the measured error eS : R+ → R is given by

eS , r − yS (4)
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Fig. 1. Block diagram of the SRNCS.

When the sensor is healthy, the actual and measured errors
e and eS are exactly identical, that is, e = eS .

The failure scenario is supposed as follows:

y1(t) = ϕ(t), t ≥ tF (5)

where tF ∈ R+ is the unknown failure time, and ϕ :
[tF , ∞) → R is the unknown continuous function which
represents the behavior of the failed sensor. Assume that ϕ
fulfills the following conditions:
(C1) There is a known positive constant η ∈ R+ so that

|ṙ − ϕ̇| ≤ η (6)

(C2) The function ϕ satisfies

sgn[r(t) − ϕ(t)] = sgn[r(t) − ϕ(tF )], t ≥ tF (7)

One of the failures, which satisfy the above conditions, is
supposed to be a stuck-type, that is, ϕ(t) = y1(tF ), t ≥ tF .
Fortunately, a class of the failures considered here, is more
wider than the stuck-type, and contains the other type of
failures.

The problem is to construct the tracking control system
which can detect the sensor failure (5) and replace the failed
sensor with the backup so as to maintain the stability and
tracking performance.

III. DESIGN OF THE SRNCS
First of all, we introduce the nonlinear detection filter ΣD

as follows.

ΣD : v̇ = sgn[eS ]
(
|v| + γ

)
+ ėS + peS (8)

where an arbitrary constant γ ∈ R+ is sufficiently large so
that γ > η. Furthermore, the controller ΣC is constructed as

ΣC : u = p2 (eS + v) (9)

where p ∈ R+ is a sufficiently large feedback gain, which
will be determined in the lemma 1 and theorem 1.

Clearly, both the detection filter ΣD and the controller ΣC

do not contain plant parameters. This is one of the advantages
and the difference from the previous works.

Here, we consider the time period [0, tF ) where the sensor
]1 is healthy, that is, e = eS . Then, the system representation
is given by

ė = −
(
bp2 − a

)
e − hT z − bp2v + ṙ − ar

ż = Fz − ge + gr

v̇ = −bp2v + sgn[e]
(
|v| + γ

)
−

(
bp2 − p − a

)
e − hT z + ṙ − ar (10)

Hence, the following result can be obtained.
Lemma 1: All the signals, e, v and z are bounded in the
time period [0, tF ).
(Proof) Because of the stable matrix F , there exists a positive
definite P ∈ R(n−1)×(n−1) so that for any positive definite
Q ∈ R(n−1)×(n−1), F T P +PF = −2Q. For such a P , we
consider the positive function S : [0, tF ) → R+ as follows:

S =
1
2

{
e2 + λzT Pz + v2

}
(11)

where λ ∈ R+ is a positive constant. The details of λ and
Q will be discussed later.

Taking time derivative of S. Then we have

Ṡ = −
(
bp2 − a

)
e2 − hT ze − bp2ve + (ṙ − ar) e

−λzT Qz − λgT Pze + λgT Pzr

−bp2v2 + sgn[e]
(
|v| + γ

)
v

−
(
bp2 − p − a

)
ev − hT zv + (ṙ − ar) v (12)

Choose sufficiently large p so that

bp2 − p − a > 0 (13)

From (12), the time derivative of S can be evaluated as
follows.

Ṡ ≤ −
(
bp2 − a

)
e2 +

1
2

(
λ‖h‖2‖z‖2 +

1
λ

e2

)
+

1
2
bp2

(
v2 + e2

)
+

1
2

(
λ|ṙ − ar|2 +

1
λ

e2

)
−λλmin[Q]‖z‖2 +

λ

2
(
‖g‖2‖z‖2 + ‖P ‖2e2

)
+

λ

2
(
‖g‖2‖z‖2 + ‖P ‖2r2

)
−bp2v2 + v2 +

1
2

(
λγ2 +

1
λ

v2

)
+

1
2

(
bp2 − p − a

) (
e2 + v2

)
+

1
2

(
λ‖h‖2‖z‖2 +

1
λ

v2

)
(14)
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Further calculation yields

Ṡ ≤ −1
2

(
p − a − 2

λ
− λ‖P ‖2

)
︸ ︷︷ ︸

α1

e2

−λ

2
{
2λmin[Q] − 2‖h‖2 − 2‖g‖2

}︸ ︷︷ ︸
α2

‖z‖2

−1
2

(
p + a − 2 − 2

λ

)
︸ ︷︷ ︸

α3

v2

+
λ

2
(
|ṙ − ar|2 + ‖P ‖2r2 + γ2

)
(15)

Regarding the last term in the R.H.S. of (14), because of
boundedness of r and ṙ, there exists a finite constant β ∈ R+

such that
β > |ṙ − ar|2 + ‖P ‖2r2 + γ2 (16)

Therefore, we have

Ṡ ≤ −αS +
λβ

2
(17)

where

α = min
{

α1,
α2

λmax[P ]
, α3

}
(18)

Thus, the solution S obeys

S ≤ S(0) exp (−αt) +
λβ

2α
(19)

which means that all the signals, e, v and z are bounded on
[0, tF ). The proof is completed. �

From Lemma 1, in the healthy situation, there exists a
finite constant Γ ∈ R+ such that

|v(t)| < Γ, t ∈ [0, tF ) (20)

On the other hand, however, in the faulty situation (t ≤ tF ),
the behavior of the filtered signal v obeys

v̇ = sgn[eS ] {|v| + γ + sgn[eS ] (ṙ − ϕ̇) + p|eS |} (21)

This implies

v̇ ≥ |v| + ε ≥ ε (for sgn[eS ] ≥ 0) (22)

and
v̇ ≤ −|v| − ε ≤ −ε (for sgn[eS ] < 0) (23)

where ε = γ − η. From these results, for both cases, the
filtered signal v tends to diverge. Hence, if the failure occurs
and the failed sensor is not replaced, then the inequality (18)
holds no longer. Therefore, the detection time tD is defined
by

tD , min {t | |v(t)| ≥ Γ} (24)

By this detection rule, the failure can be exactly detected. At
the same time, the failed sensor is replaced with the healthy
backup and the system stability and performance recovery.

Thus, we can summarize the results in the following
theorem as a main result.

Theorem 1: Consider the SRNCR constructed by (3), (4),
(8), (9) and (23). Then, the SRNCR has the following
properties;
(P1) After the failure, there is a finite detection time tD(>
tF ) such that

tD ≤ tF +
2Γ
ε

(25)

(P2) All the signals, e, v and z are bounded on [0, ∞).
(P3) Regarding the tracking performance, for arbitrarily
small δ ∈ R+, there exits a p0 ∈ R+ such that for p > p0

the following inequality holds,

lim sup
t→∞

|e(t)| ≤ δ (26)

(Proof) Re-consider the behavior of v in the faulty situation.
From (21), it follows that

v ≥ ε(t − tF ) + v(tF ) , ṽ (27)

Clearly, there is a finite time t̃D > tF such that ṽ(t̃D) = Γ,
and it satisfies

t̃D − tF ≤ Γ + |v(tF )|
ε

≤ 2Γ
ε

(28)

Because tD ≤ t̃D, the inequality (24) holds. Also, from (22),
in the case of sgn[eS ] < 0, by the same manner as above,
the inequality (24) holds. Thus, (P1) is true.

Furthermore, from Lemma 1, on the period [0, tF ), all
the signals, e, v and z are bounded. On the period [tF , tD)
where the sensor fails, from (23), v is bounded. Hence, u is
bounded. For bounded u, the plant ΣP does not have a finite
escape time, and so the signals e and z are bounded. After
repairing sensor, the control system recovers its stability and
the tracking performance. Finally, we can conclude that all
the signals, e, v and z are bounded on [0, ∞). Hence, (P2)
is proven.

At last, regarding (P3), before the failure, or after repairing
sensor, the behavior of e, v and z obey the differential
equations shown in (10). Therefore, from (18), it follows
that

lim sup
t→∞

|e| ≤
√

λβ

α
(29)

Here, take sufficiently large p such that

min{α1, α3} > 1 (30)

Then, we have

α = min
{

1,
α2

λmax[P ]

}
(31)

The constants α and β do not depend on λ. Therefore, we
can choose sufficiently small λ so that√

λβ

α
≤ δ (32)

This means that (P3) is true.
Thus, the theorem 1 can be proven. �

Remark 1: The candidate of Γ is given by

Γ =
(

2S(0) +
λβ

α

) 1
2

(33)
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Fig. 2. Illustration of the CSTR with the two temperature sensors.

which is independent of ε. Hence, from (24), the detection
time, tD − tF can be arbitrarily shortened by choosing ε.
This is one of the advantages of the proposed method.
Remark 2: The systems stability and the control perfor-
mance are guaranteed based on high-gain feedback [5], [6].
Regarding to the tracking performance (25), from (29) and
(31), it is shown that for smaller δ (small λ), the feedback-
gain p should be higher.

IV. APPLICATION OF A CSTR

In this section, an application of the proposed method to
the well-known continuous stirred-tank reactor (CSTR) is
shown to confirm the effectiveness of the SRNCS.

Consider a first oder, irreversible, exothermic, chemical re-
action (where A→B) [7], [8]. The mass and energy balances
are expressed as follows:

ċA = −κ(t, T )cA +
Q

V
(cin − cA)

Ṫ =
(−∆H)

C
κ(t, T )cA

+
Q

V
(Tin − T ) +

UA

V C
(Tc − T ) (34)

where cA ∈ R is the concentration of species A, and
T ∈ R+ is the reactor temperature which is the controlled
variable. TC is the manipurated temperature as a control
input. Commonly, κ(t, T ) is a nonlinear term, and is given
by Arrhenius relation, κ(t, T ) = κ0 exp {−E/(RT )}. The
parameters are shown in Table 1.

The control objective is to make the temperature T track
the desired set-point Tr ∈ R+ in the presence of the failure
of the temperature sensor.

Now, set y = T , z = cA and u = Tc. Then from (33) we
can obtain a simplified model as follows.

ẏ = −ãy + b̃u + ρ1z + ρ2

ż = −(f̃ + ρ3)z + ρ4 (35)

where ã, b̃ and f̃ are some positive constants, and ρi : R+ →
R ( i = 1, 2, 3, 4) are bounded functions with respect to time
t. Although the above mathematical model (34) is slightly

different from (1), the proposed SRNCS design is applied to
the CSTR.

The design parameters for the detector ΣD and the con-
troller ΣC are given as follows.

γ = 3, p = 5

The feedback-gain p is chosen by trial and error. Through-
out several numerical simulation, the threshold Γ for fault
detection is set as

Γ = 13

To measure T , two temperature sensors are prepared as
shown in Figure 2, where y1 = T1 [K] and y2 = T2 [K]
are the temperatures measured by the sensors. The failure
scenario is supposed to be a stuck-type as

y1(t) = y1(tF ) = T (tF ), tF = 10 [min]

Hence, because of η = 0, from (24), the maximum detection
time is estimated by

tD ≤ tF +
2Γ
ε

< 10 + 27/3 = 19 , t̃D [min]

In the simulation, the initial values of the CSTR are given
as

T (0) = y(0) = 380 [K]

cA(0) = z(0) = 0.2 [mol/L]

The set-point Tr is chosen as

Tr = 383.7 [K]

At this temperature, the desired concentration is c∗A = 0.1
[mol/L].

The simulation results are shown in Figures 3 and 4. In
Figure 3, the upper figure shows the actual temperature T =
y, and also the lower figure illustrates the concentration cA.
In Figure 4, the upper shows the manipulated temperature
Tc, and the lower shows the absolute value of the filtered
signal v (solid line) and the threshold Γ (dashed line).

From these results, |v| hits Γ at time tD = 10.04 [min] (see
Figure 4), and so sensor failure can be successfully detected
earlier than the estimated time t̃D. In (24) and also (27), it
is supposed that the sign of v at the failure time is unknown.
Hence, with the absolute value of v, the estimated time t̃D
is calculated. This results in the excessively large estimated

TABLE I
CSTR PARAMETERS [6]

Variable Value

V 100 L
Q 100 L/min
cin 1 mol/l
κ0 7.2 × 1010 min−1

E/R 8750 K
∆H −5.0 × 104 J/mol
C 239 J/L K
Tin 350 K
UA 5.0 × 104 J/min K
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Fig. 4. Simulation results; the manipulated temperature Tc and the absolute
value of the filtered signal v with the threshold Γ.

value. In this simulation, because v(tF ) is a positive value,
i.e. v(tF ) ' 12.5, we have

tD ≤ tF +
Γ − v(tF )

ε
= 10 + 0.5/3 ' 10.17 [min]

This is the reason why there is a large difference between
the above detection time tD and the estimated maximum
time t̃D. Anyway, the early and exact fault detection can be
achieved for the CSTR.

In addition, the controlled temperature T well tracks the
set-point Tr so as to maintain the desired concentration in
spite of the existence of the nonlinear terms ρi in the CSTR
model (see Figure 3).

In Figure 4, we can see the small oscillation. This does
not come from the effect of noise because any noise is not

inserted in the simulation. This oscillation might be caused
by the sign function sgn[eS ] in the detection filter ΣD. In
spite of oscillatory behaviors of v and Tc, the temperature
T and the concentration cA are is well-controlled, and the
effect from v and Tc can be suppressed by the high-gain
controller.

V. CONCLUSIONS

This paper presents a new design method for an SRNCS
for plants with faulty sensors. It is theoretically shown that
the SRNCS find the sensor failure exactly within a pre-
specified detection time, and repair the sensor (replacing
sensors). Furthermore, in this paper, the SRNCS is applied to
the CSTR, and the effectiveness is confirmed through several
numerical simulations.
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