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Abstract— In this paper, an adaptive scheduling H∞ distur-
bance rejection controller is designed for a class of nonlinear
Markov jump systems with nonhomogeneous Markov jump
process, in which the transition probabilities are time-varying.
To estimate and reject the disturbance, a disturbance observer
is considered, such that a disturbance rejection state-feedback
control law is designed. Under the designed controller, a
sufficient condition is presented to ensure that the resulting
closed-loop system is stochastically stable and a prescribed H∞
performance index is satisfied. Finally, a simulation example is
given to illustrate the effectiveness of the developed techniques
proposed.

I. INTRODUCTION

Markov jump systems (MJSs), as a special kind of hybrid
system, has attracted much attention in recent years, due to
its application in modeling much practical systems, such as
in manufacturing systems, economic systems, and electrical
systems [1]. Much work has been obtained for this type of
stochastic systems, such as stochastic stability and stabiliza-
tion [2], control [3], [4], fault detection and filtering [5]–[7],
etc. However, all the works mentioned above are all under
the assumption that transition probabilities for the MJSs are
fully available although this information may not be fully
known in practice.

On the other hand, disturbance in system may lead to very
serious result, even make stable system unstable. Therefore,
disturbance rejection is crucial to controller design in realistic
control systems. To reduce or rejection disturbance, some
attempt work has been made, one typical method is based
on disturbance observer, which was originally presented in
[8]. It is an effective way to handle this problem. The basic
idea is to construct an observer to estimate the dynamic
of the disturbance, and then a feed-forward compensator is
applied to compensate the disturbance based on the output
information of the observer. This has attracted much attention
in the control community [9]–[12]. Based on our team’s
previous work [13], [14], in this paper, we will design adap-
tive continuous gain-scheduling H∞ disturbance rejection
controller for a class of nonlinear MJSs with nonhomoge-
neous jump processes. The rest of the paper is organized as
follows: Problem statement and preliminaries are given in
Section 2. In Section 3, stochastic stability analysis of linear
stochastic systems is addressed. In Section 4, a set of mode-
dependent H∞ disturbance rejection controllers for linear
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Markov jump systems is designed, and then, continuous
gain-scheduling disturbance rejection controller for the entire
nonlinear stochastic system is designed in Section 5. A
numerical example is shown to illustrate the effectiveness of
our approach in Section 6. Finally, some concluding remarks
are given in Section 7.

The notation Rn stands for an n-dimensional Euclidean
space, the transpose of a matrix is denoted by AT, E{·}
denotes the mathematical statistical expectation of the s-
tochastic process or vector, Ln

2 [0,∞) stands for the space
of n-dimensional square integrable vector valued functions
over [0,∞), a positive-definite matrix is denoted by P > 0,
I is the unit matrix with appropriate dimension, and ∗ means
the symmetric term in a symmetric matrix.

II. PROBLEM STATEMENT AND PRELIMINARIES

Let (M,Q,P ) be a probability space, where M , Q and
P represent, respectively, sample space, algebra of events
and probability measure. Consider the following nonlinear
Markov jump system (NMJS) with nonhomogeneous process

xk+1 = f1(xk, uk, d1k, d2k, rk) (1)

where f1(·) is a nonlinear function, xk ∈ Rn represents
the state of the system, uk ∈ Rl represents the control
input, d1k is an external disturbance to the input of such
system and it satisfies Assumption 2.1 to be defined later,
d2k ∈ Lq

2[0,∞) is another type of external disturbance
to the system. {rk, k ≥ 0} is a discrete time Markov
stochastic process which takes values from a finite set of state
Λ = {1, 2, 3, . . . , N}, and r0 represents the initial mode, the
transition probability matrix is defined as Π(k) = {πij(k)},
i, j ∈ Λ, πij(k) = P (rk+1 = j|rk = i) is the transition
probability from mode i at time k to mode j at time k + 1,

which satisfies πij(k) ≥ 0 and
N∑
j=1

πij(k) = 1.

In order to linearize system (1) in the vicinity of these
selected operating states, gradient linearization procedure
[15] is applied here, and let x(m)

k , m ∈ Ψ, Ψ = {1, 2, 3 . . . h}
be the selected working points of system (1), where h repre-
sents the number of selected operating states, (x

(m)
k )⊤ =[

(x
(m)
1 )k (x

(m)
2 )k . . . (x

(m)
n )k

]
. Then, system (1)

can be linearized at these selected working points in respec-
tive time interval.

Thus, a series of Markov jump linear systems (MJLSs)
are obtained as follows:

251



xk+1 = Am(rk)xk +Bm(rk)[uk + d1k] +Hm(rk)d2k (2)

where Am(rk), Bm(rk) and Hm(rk) are mode-dependent
constant matrices for the m-th linear stochastic system.

In this paper, nonhomogeneous jump process, in which
transition probability of system (2) is time-varying, is de-
scribed by a polytope with several vertices, which is given
below:

Π(k) =
w∑

s=1

αs(k)Π
s

where Πs are given matrices and s = 1, . . . , w, w
represents the number of the vertices, and

0 ≤ αs(k) ≤ 1,
w∑

s=1

αs(k) = 1

Assumption 2.1: The disturbance d1k under consideration
in (2) is generated by the system given below:{

wk+1 = W (rk)wk +M(rk)d3k

d1k = V (rk)wk

(3)

where W (rk), M(rk) and V (rk) are mode-dependent
constant matrices with appropriate dimensions at the working
instant k, d3k ∈ Lq

2[0,∞) is an external disturbance to the
system arise due to uncertainties or system noises.

Remark 2.1: Comparing with those considered in the ex-
isting literature, disturbance d1k in this paper is a periodic
noise, which is more realistic in practical systems.

Assumption 2.2: For systems (1) and (2), it holds that 1)
(Am, Bm) is controllable; and 2) (W,BmV ) is observable.

For brevity, when rk = i, i ∈ Λ, the matrices Am(rk),
Bm(rk) and Hm(rk) are denoted as Am(i), Bm(i) and
Hm(i), respectively. The same principle is applied to all
other parameter matrices.

Under the assumption that all the system states are avail-
able, we need only to estimate d1k. For this, we consider the
following reduced-order observer.



d̂1(k+1) = V (i)ŵk

ŵk+1 = vk − L(i)xk

vk+1 = (W (i) + L(i)Bm(i)V (i))[vk − L(i)xk]

+ L(i)[Am(i)xk +Bm(i)uk]

(4)

The controller in this system is designed as:

uk = −d̂1k +Km(i)xk

Denote

ek = wk − ŵk

Then, we have

ek+1 = (W (i) + L(i)Bm(i)V (i))ek

+M(i)d3k + L(i)Hm(i)d2k
(5)

Let

ξTk =
[
xT
k eTk

]
Combining systems (1), (2) and (3), we obtain an error

estimation system:

ξk+1 = Am(i)ξk + Hm(i)dk (6)

where
dTk =

[
dT2k dT3k

]
Am(i)

=

 Am(i) +Bm(i)Km(i) Bm(i)V (i)

0 W (i) + L(i)Bm(i)V (i)


Hm(i) =

 Hm(i) 0

L(i)Hm(i) Mm(i)

 ∀i ∈ Λ

The reference output of system (5) is set as:

zk = Cm(i)ξk (7)

where

Cm(i) =
[
C1m(i) C2m(i)

]
The aim of our work is: design an H∞ controller for

system (2), ensure that the error system (6) is stochastically
stable and satisfies a prescribed H∞ performance index. To
proceed further, we recall some definitions and present some
preliminary work which will be needed to develop our main
results in the paper.

Definition 2.1: For any initial mode r0, and a given initial
state ξ0, system (6) (with dk = 0) is stochastically stable if

lim
m→∞

E{
m∑

k=0

ξTk ξk|ξ0, r0} < ∞ (8)

Definition 2.2: For any initial mode r0, a given initial
state ξ0 and a constant γ > 0, if there exists a feasible
controller uk and a positive number Ñ(ξ0, r0), such that
system (6) (with dk ̸= 0) satisfies (9) and (10), then,
error estimation linear system (6) is said to be stochastically
stabilizable with an H∞ performance index γ, i.e.,

lim
m→∞

E{
m∑

k=0

ξTk ξk|ξ0, r0} < Ñ(ξ0, r0) (9)

E

{ ∞∑
k=0

zTk zk

}
≤ γ2E

{ ∞∑
k=0

dTk dk

}
(10)

Sufficient conditions to ensure that system (6) with dk = 0
is stochastically stable are given in the following lemma,
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where the transition probabilities are time variant matrices
and the Lyapunov function is selected as a polytope function.

III. STOCHASTIC STABILITY

Lemma 3.1: For a given initial condition ξ0, system (6)
(with dk = 0) is stochastically stable, if there exists a set of
positive definite symmetric matrices Ps(i) and Pq(j) such
that

Ξ(i) =

[
a11 a12

∗ a22

]
< 0 ∀i ∈ Λ (11)

where

a11 = −
w∑

s=1

αs(k)Ps(i), a12 = A T
m (i)

a22 = −(
N∑
j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π
s
ijPq(j))

−1

0 ≤ αs(k) ≤ 1,

w∑
s=1

αs(k) = 1

0 ≤ βq(k) ≤ 1,
w∑

q=1

βq(k) = 1

Proof: State equation of system (6) (with dk = 0) is
written as:

ξk+1 = Am(i)ξk (12)

Lyapunov function for system (12) is constructed as fol-
lows:

V (ξk, i) =
w∑

s=1

αs(k)ξ
T
k Ps(i)ξk (i ∈ Λ)

where

0 ≤ αs(k) ≤ 1,
w∑

s=1

αs(k) = 1

Then, ∆V (ξk, i) for system (12) is obtained as:

∆V (ξk, i) = E{V (ξk+1, i)} − V (ξk, i)

= ξTk [A
T
m (i)

N∑
j=1

w∑
s=1

w∑
s=1

αs(k)αs(k + 1)πs
ijPs(j)Am(i)]ξk

−
w∑

s=1
αs(k)ξ

T
k Ps(i)ξk

Denote
w∑

s=1

αs(k + 1)Ps(j) =
w∑

q=1

βq(k)Pq(j)

Then, we have

∆V (ξk, i) =

ξTk [A
T
m (i)(

N∑
j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π
s
ijPq(j))Am(i)]ξk

−ξTk
w∑

s=1
αs(k)Ps(i)ξk

= ξTk Ξ(i)ξk

For system (12), condition (11) implies

∆V (ξk, i) < 0 ∀i ∈ Λ

Let

η = min
k

{λmin(−Ξ(i))} ∀i ∈ Λ

where λmin(−Ξ(i)) is the minimal eigenvalue of −Ξ(i).
Then,

∆V (ξk, i) ≤ −ηξTk ξk

Thus,

E{
T∑

k=0

∆V (ξk, i)} = E{V (ξT+1, i)} − V (ξ0, i)

≤ −ηE{
T∑

k=0

∥ξk∥2}

and the following inequality holds

E{
T∑

k=0

∥ξk∥2} ≤ 1
η{V (ξ0, i)− E{V (ξT+1, i)}}

≤ 1
ηV (ξ0, i)

which, in turn, implies that

lim
T→∞

E{
T∑

k=0

∥ξk∥2} ≤ 1

η
V (ξ0, i)

From Definition 2.1, system (6) (with dk = 0) is stochas-
tically stable, and this concludes the proof.

Theorem 3.1: For a given initial condition ξ0, ∀i ∈ Λ,
suppose that there exists a set of positive definite symmetric
matrices Ps(i) and Qq(j) such that

Φ1(i) =



b11 b12 . . . b13

∗ −Qq(1) 0 0

∗ ∗
. . . 0

∗ ∗ ∗ −Qq(N)


< 0 (13)

where

Qs(i) = P−1
s (i), Qq(j) = P−1

q (j)

b11 = −GT(i) +Qs(i)−G(i)
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b12 =
√
πs
i1G

T(i)A T
m (i), b13 =

√
πs
iNGT(i)A T

m (i)

Then, system (6) is stochastically stable with dk = 0.
Proof: From Lemma 3.1, Ξ(i) < 0 implies

Φ2(i) =

[
c11 c12

∗ c22

]
< 0 ∀i ∈ Λ (14)

where
c11 = −Ps(i)

c12 =
[

A T
m (i) . . . A T

m (i)
]
N

c22 = −diag
[
(πs

i1)
−1Qq(1) . . . (πs

ij)
−1Qq(j)

]
which, in turn, implies that
Φ3(i)

=



−Ps(i)
√
πs
i1A

T
m (i) . . .

√
πs
iNA T

m (i)

∗ −Qq(1) 0 0

∗ ∗
. . . 0

∗ ∗ ∗ −Qq(N)


Multiplying Φ3(i) by G T(i) and G (i) on the left hand

side and the right hand side, respectively,
where

G (i) = diag
{

G(i) I · · · I
}
,

we have

Φ4(i) =


d11 d12 . . . d13

∗ −Qq(1) 0 0

∗ ∗
. . . 0

∗ ∗ ∗ −Qq(N)

 < 0 (15)

where
d11 = −GT(i)Ps(i)G(i)

d12 =
√
πs
i1G

T(i)AT
m(i)

d13 =
√
πs
iNGT(i)AT

m(i)

It follows that

GT(i)Ps(i)G(i) ≥ GT(i)−Qs(i) +G(i)

Therefore, Φ1(i) < 0 guarantees Φ4(i) < 0. This implies
that system (6) (with dk = 0) is stochastically stable, and
hence completing the proof.

Next, in order to minimize the influences of the dis-
turbances, we will design a robust H∞ controller under
which system (6) subject to all admissible disturbances is
stochastically stable and has a prescribed H∞ performance
index.

IV. DISTURBANCE REJECTION H∞ CONTROLLER
DESIGN

Theorem 4.1: For a given constant γ > 0, suppose that
there exists a set of positive definite symmetric matrices

Ps(i) and Qq(j) such that
Ω(i)

=



−Ps(i) 0 f1 . . . f2 f5

∗ −γ2I f3 . . . f4 0

∗ ∗ −Qq(1) 0 0 0

∗ ∗ ∗
. . . 0 0

∗ ∗ ∗ ∗ −Qq(N) 0

∗ ∗ ∗ ∗ ∗ −I


< 0

where

Qq(j) = P−1
q (j), f1 =

√
πs
i1A

T
m (i)

f5 = CT
m(i), f2 =

√
πs
iNA T

m (i)

f3 =
√
πs
i1H

T
m (i), f4 =

√
πs
iNH T

m (i).

Then, system (6) (with dk ̸= 0) is stochastically stable
and also satisfies a prescribed H∞ performance index. The
corresponding controller is uk = −d̂1k +Km(i)xk.

Proof:
Introduce the following cost function for system (6) (with

dk ̸= 0).

J(T ) = E

{
T∑

k=0

zTk zk

}
− γ2E

{
T∑

k=0

dTk dk

}
(16)

Under zero initial condition, the index J(T ) can be
rewritten as:

J(T ) ≤ E

{
T∑

k=0

[zTk zk − γ2dTk dk +∆V (xk, i)]

}
(17)

By Lemma 3.1, it follows that

J(T ) ≤ E

{
T∑

k=0

[zTk zk − γ2dTk dk +∆V (xk, i)]

}
= E

{
T∑

k=0

{(CT
m(i)ξk)

TCm(i)ξk − γ2dTk dk +∆V (xk, i)}
}

≤ E

{
T∑

k=0

{(CT
m(i)ξk)

TCm(i)ξk − γ2dTk dk}
}

+E

{
T∑

k=0

[ÃT
m(i)(

N∑
j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π
s
ijPq(j))Ãm(i)]

}
−E

{
T∑

k=0

ξTk
w∑

s=1
αs(k)Ps(i)ξk

}
where

Ãm(i) = Am(i)ξk + Hm(i)dk

By Theorem 3.1 and recalling Schur complement, it holds
that

J(T ) ≤ x̃T
kΩ(i)x̃k
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where
x̃k =

[
ξTk dTk

]
Clearly, Ω(i) < 0 can be reduced to inequality (13) by

denoting wk = 0, so system (6) is stochastically stable. On
the other hand, for T → ∞, Ω(i) < 0 results in J(∞) <
−V (x∞, i) < 0, that is

E

{ ∞∑
k=0

zTk zk

}
≤ γ2E

{ ∞∑
k=0

dTk dk

}
(18)

Thus, system (6) is stochastically stable and has a pre-
scribed H∞ performance index where the controller may be
chosen as uk = −d̂1k+Km(i)xk. This completes the proof.

V. ADAPTIVE SCHEDULED H∞ CONTROLLER DESIGN

Note that for each linear stochastic system of system (1),
we can obtain its state feedback controller, such that a given
H∞ performance index is satisfied. In the following, we
will use curve fitting approach to design a continuous gain-
scheduled controller uk = −d̂1k + K(i)xk for the entire
nonlinear stochastic system (1). For this purpose, we describe
the procedure for computing the gain scheduling.

First, from Theorem 4.1, the mode-dependent gain matri-
ces Km(i) ∈ Rl×n of the controller can be obtained for the
m − th linear jump system (1). Denote Km(a, b, i) as ele-
ments of Km(i), where a = 1, 2, 3 . . . , l; b = 1, 2, 3 . . . , n,
and

Km(i) = {Km(a, b, i)}

Second, denote the matrix K̃(i) as:

K̃(i) = {K̃(a, b, i)}

x̂e(k) =
[
x
(1)
e (k) x

(2)
e (k) . . . x

(h)
e (k)

]
e = 1, 2, 3 . . . n

where
K̃(a, b, i) =

[
K1(a, b, i) K2(a, b, i) . . . Kh(a, b, i)

]
Next, an appropriate fixed value of e is selected and the

polynomial fitting approach is applied to matrices K̃(a, b, i)
and x̂e(k). In this way, each element of the controller is
described as a polynomial, and the continuous controller is
obtained for the nonlinear jump system (1) as given below:

K(i) = {K(a, b, i)}

K(a, b, i) = q0(a, b) + q1(a, b)xe(k) + q2(a, b)x
2
e(k)

+q3(a, b)x
3
e(k) + . . .+ qg(a, b)x

g
e(k)

q0(a, b), . . . , qg(a, b) are fitted coefficients, and g is a select-
ed integer.

VI. SIMULATION RESULTS

The stochastic bioreactor system [16] with admissible
disturbances under consideration is given below:
x1(k + 1) = −[u1(k) + d1(k)] + x1(k)(1− x2(k))

exp(x2(k)
β ) + 0.2d2(k)

x2(k + 1) = −[u2(k) + d1(k)]x2(k) + x1(k)(1− x2(k))

1+α(i)
1+α(i)−x2(k)

exp(x2(k)
β )

z(k) = x1(k) + u1(k) + 0.2d2(k)

where x1(k) and x2(k) represent the number of cells and
the nutrient concentration at time k respectively. α(i) and
β are assumed to be known constant parameters which are
the growth rates and the nutrient inhibition parameter, the
input variable u(k) represents the flow rate through the tank.
And the nutrient concentration variable x2(k) is assumed to
evolve on the open intervals (0, 0.18). The Markov jumping
process has two jumping modes, and linear parameters are
given as α(1) = 0.02 and α(2) = 0.03,

H(1) =

[
0.1
−0.1

]
, H(2) =

[
0.1
0.1

]

W (1) =

[
0 −1

1 0

]
, W (2) =

[
0 1

−1 0

]

V (1) =
[
0.3 0.5

]
, V (2) =

[
0.1 −0.2

]
M(1) =

[
0.1
0.1

]
, M(2) =

[
0.1
0.2

]

C1(1) =
[
0.5 0.1

]
, C1(2) =

[
0.1 0

]
C2(1) =

[
1.2 0.1

]
, C2(2) =

[
0 0.1

]
The vertices of the time-varying transition probability

matrix are given as follows:

Π1(k) =

 0.2 0.7 0.1

0.35 0.2 0.45

0.1 0.4 0.5


,

Π2(k) =

 0.55 0.3 0.15

0.48 0.22 0.3

0.3 0.2 0.5



Π3(k) =

 0.67 0.17 0.16

0.3 0.47 0.23

0.26 0.1 0.64


,

Π4(k) =

 0.4 0.2 0.4

0.8 0.1 0.1

0.25 0.25 0.5


By solving Theorem 4.1, mode-dependent controller gain

matrices K̃(a, b, i) of system (6) are obtained
The continuous gain-scheduling controller for the uncer-

tain nonlinear stochastic bioreactor system, is designed, and
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given initial state and parameter γ as x0 =
[
0.5 1

]T
and

γ = 0.42. The disturbance d1k, estimation disturbance d̂1k,
and error disturbance d1k− d̂1k are shown in Figure 1. State
trajectories of the stochastic system and the controlled output
of the system are given in Figures 2-3. Clearly, the stochastic
system (1) is stochastically stable under such a controller.
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Fig. 1. Disturbance d1
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Fig. 2. Trajectory of system states
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Fig. 3. Trajectory of controlled output z

Remark 6.1: To demonstrate the effectiveness of our re-
sults, we carry out comparison in Figure 3 by using a single
H∞ controller, meaning that uk = K(i)xk. Obviously, in
the presence of harmonic disturbance d1k, the single H∞
controller fails to work.

VII. CONCLUSIONS

In this paper, the issue on adaptive disturbance rejec-
tion controller design for a class of discrete-time nonlinear
Markov jump systems with nonhomogeneous processes is
addressed. Transition probability is a time-varying matrix
and expressed as being enclosed by a polytope, in which
vertices are given. A parameter-dependent Lyapunov func-
tion is introduced to investigate the stochastic stability of the
systems. Furthermore, it is also shown that a prescribed H∞
performance index is satisfied. Finally, simulation results
obtained show the potential of the approach proposed.
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