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Abstract - In this paper a Mixed Integer Dynamic Optimization 

(MIDO) framework is exploited for combined Unit Commitment 

and Economic Load Scheduling (UCELS) optimization of power 

plants. Economic load scheduling optimization problem is 

formulated as a Dynamic Optimization (DO) problem that allows 

us to optimize the plant operations by taking into account the time 

varying dynamics. Dynamic optimization problem together with 

the switching (on/off) states of the generating units as binary 

decision variables is formulated as MIDO problem. Load 

scheduling optimization of a power plant is carried out with the 

objective of minimizing a cost function that includes fuel cost, 

emission cost, start-up cost, shutdown cost, equipment ageing cost 

and penalty cost for not meeting load demand. Typical constraints 

for the optimization problem that are considered here include 

ramping constraints, minimum and maximum load constraints 

associated with the power plant units e.g., gas turbine, boilers, 

steam turbine, etc. MIDO problem thus formulated is solved using 

the dynamic optimization tool equipped with a Mixed Integer 

Linear Programming (MILP) solver. Models for the power plant 

units are developed using the object oriented modeling language, 

ModelicaTM. In this study, a typical Combined Cycle Power Plant 

(CCPP) and Fossil Fired Power Plant (FFPP) configuration is 

considered for the verification of load scheduling optimization 

solutions for different scenarios. 

 

Keywords—Load scheduling; Power plant;  MIDO; CCPP; 

FFPP 

I.  INTRODUCTION 

Economic load scheduling (ELS) optimization means 

optimally distributing load between different heat and power 

generating units in a power plant. If the decision on 

switching states (on/off) of the generating units is also 

considered, then the problem becomes a combined Unit 

Commitment and Economic Load Scheduling (UCELS) 

optimization. Hence the UCELS optimization problem 

accommodates both the continuous states (e.g. 

heat/electrical/steam output) and integer states (e.g., on/off 

states of the boilers/turbines) as the decision variables. 

 

A variety of optimization techniques has been applied 

in solving the economic load dispatch problem. References 

[1] explored the feasibility to solve the economic emission 

dispatch problem using classic optimization techniques such 

as linear or quadratic programming. Fuzzy based techniques 

to solve the combined emission and economic dispatch 

problem are reported in [2] and [3]. Reference [4] has used 

artificial intelligent techniques like neural network. 

Reference [5] has used genetic algorithm for solving the 

economic dispatch problem in power plants. The use of 

hybrid genetic algorithms in solving the emission and 

economic dispatch is reported in [6]. Reference [7] has 

considered the lifetime cost of the power units in the load 

scheduling optimization. Reference [8] has developed 

particle swarm optimization algorithm based technique for 

solving emission and economic dispatch problem. Reference 

[9] has used Newton-based algorithm, [10] has used Pattern 

Search method to solve various types of economic dispatch 

problem like economic dispatch with valve point (EDVP), 

multi-area economic load dispatch (MAED), combined 

economic environmental dispatch (CEED) and cubic cost 

function economic dispatch (QCFED).  

 

Most of the work already done in the area of ELS 

optimization of power plants mainly consider fuel cost in 

the optimization criterion for optimal scheduling while 

meeting the power demand. A mixed integer linear 

programming (MILP) based unit commitment problem 

among power generation unit is addressed in [14] only 

based on fuel cost. Due to stricter environmental 

regulations, emissions cost should also be considered for 

ELS. Emission costs are the costs incurred in treatment of 

the emissions produced during the power generation.  ELS 

with fuel cost and emission cost as the optimization 

objective has also been considered in the literature. Another 

important cost factor that is considered in the literature for 

ELS optimization is ageing cost [7].  Ageing cost of the 

power plant units is calculated based on the equipment life, 

operating conditions and their depreciation rate. In addition 

to these cost factors, the startup cost and the shutdown cost 
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of the power plant units is also important in load scheduling 

optimization formulation.  

 

In this paper, a formulation of UCELS optimization 

problem of Combined Cycle Power Plant (CCPP) is 

attempted. A representative CCPP prototype model is used 

to solve the UCELS optimization problem. This novel 

approach considers fuel costs, emission pollutant treatment 

cost, equipment start-up and shut-down costs and equipment 

aging cost to arrive at the optimal load scheduling solution. 

The major constraints for optimization are minimum and 

maximum load constraints, maximum number of start-ups 

/shut-downs and load ramping constraints of plant units. 

 

A Mixed Integer Dynamic Optimization (MIDO) [11] 

framework is exploited in this work for solving UCELS 

problem in power plants. In the current work, UCELS 

problem is formulated as a dynamic optimization (DO) 

problem that allows us to optimize the load scheduling 

between generating units of power plant by taking into 

account their time varying dynamics. The UCELS 

optimization problem becomes MIDO problem since binary 

decision variables (On/Off state) are considered. The power 

plant unit models were developed using the Modelica
TM

 

language that uses the object oriented modeling 

methodology. The Modelica
TM

 language tools used during 

the work, supports models represented by Ordinary 

Differential Equations (ODEs), Differential-Algebraic 

Equations (DAEs), bond graphs, finite state automata, Petri 

nets etc. [12]. The object orientated approach in Modelica
TM

 

has brought modeling much closer to the way in which an 

engineer assembles individual units to build a complete 

system. Models developed using these approaches are 

generic and flexible in their usage. Such an approach 

reduces the efforts in the development of models and 

enhances their reusability so that the overall costs of 

development and maintenance of simulation models is 

reduced. Also Modelica
TM

 language tool enables symbolic 

representation of the equations that can be translated 

automatically to xml and c# files that can be interfaced with 

external optimization platforms. 

 
The paper is organized as follows. In section II, a typical 

CCPP model configuration is explained. The optimization 
problem formulation and the cost models are described in 
section III.  Load scheduling optimization results of CCPP 
model for different test cases are discussed in detail in 
section IV. In section V, a typical FFPP model configuration 
and preliminary load scheduling optimization results are 
presented. Conclusions are provided in section VI of this 
paper. 

II. COMBINED CYCLE POWER PLANT MODEL 

Fig. 1 shows a typical CCPP configuration , with 

combined power and district heating),  is used in this study. 

The gas source (natural gas) is compressed and burnt in the 

combustion chamber of the gas turbine (GT) which, coupled 

with the electrical generator, produces the electrical energy. 

The heat available in the flue gas coming out from the GT is 

utilized to produce High Pressure (HP) and Low Presure 

(LP) steam in HRSG units. In addition, the HRSGs are 

provided with duct burners (natural gas is used as fuel) to 

heat the flue gas coming out from GTs. The HP and LP 

steam produced in HRSG is then sent to HP & LP steam 

headers respectively. From the steam headers, the steam (HP 

& LP) will be directed to the district heating applications 

(DH) to meet their heat demands and also to steam turbine 

(ST) for power generation.  

 

The GT and HRSG units are modeled using the 

piecewise linear approximation of their non-linear input-

output characteristics data using two point convex/concave 

method. These linear models are then used to develop the 

CCPP model for solving load scheduling optimization 

problem. The main objective of this problem is to meet the 

load (power and / or heat) demand by scheduling the load 

among the multiple generation units, subjected to the 

minimization of the fuel cost, startup cost, shutdown cost, 

emission cost and equipment ageing costs.  

 
Emission cost models for each pollutant (NOx, COx, 

SOx) are designed using the piecewise linearization of the 
non-linear functions [13].  Lifetime cost models are designed 
considering the effect of electrical load on each unit. These 
models are explained in detailed in section III. 

 
 

Fig. 1: Combined Cycle Power Plant Model developed using the ModelicaTM 

III. PROBLEM FORMULATION  

The problem formulation (objective function and 
constraints) for the CCPP configuration as shown in Fig. 1 is 
explained further in this section. 

A. Objective Function 

 

The UCELS optimization problem is solved using 

Mixed Integer Linear Programming (MILP) technique with 

the objective of minimization of the cost function J. 

 

where, 

 

      

   (1) 
,dem fuel start shut emission ageing revenueJ C C C C C C     

1 2 3 4 5 1 2 3, , , , , , ,
min

l l lu u u u u u u u
J
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The decision variables u1, u2 and u3 represent the 

electrical load of the respective GTs and the variables u1l, ul2 

and ul3 are binary variables which define the state of the 

GTs whether it is “on” or “off”.  u4 and u5 are the steam 

flow from HP and LP headers to the respective district 

heating applications to meet the heat demand. 

 

Each of the terms in the cost function (J) is explained below. 

 

Cdem is the penalty function for not meeting the electric 

demands over the prediction horizon: 

 
 1

 Elec 2  Elec  Heat 3  Heat

0 1 1

( ) ( ) ( ) ( )
M n n

dem dem i dem dem i dem

t i i

C k y t D t k y t D t


  

     
 

(2) 

For CCPP, the penalty function Cdem includes cost factors 

for not meeting both the electric and heat demands over the 

prediction horizon.  

Where  

2 ( )iy t  is the actual power generated by the i
th

 unit, 

3 ( )iy t is the actual heat produced by i
th

 unit 

 Elecdemk and
  Heatdemk are the suitable weight coefficients, 

 Elec ( )demD t and
 Heat ( )demD t , for t = 0,…,(M-1) are the forecasts 

of the electrical and heat demand, respectively, 

n is the number of generating units, 

M is the prediction horizon. 

 

Cfuel is the total cost of fuel consumption in all the 

generating units, 

 
1

 1

0 1

( )
M n

fuel i fuel i

t i

C k y t


 

     (3)

     

Where 

1( )iy t  is the fuel consumption in the i
th

 unit, 

 i fuelk  is the cost of fuel consumption yi1. 

Cemission is the cost involved in treating the pollutant emission 

(NOx, SOx, COx) produced by the power plant and is given 

by, 

 
1

 2

0 1

( )
M n

emission i emission i

t i

C k f y t


 

    (4)

  

where ki emission  is the cost coefficient for emission treatment 

and  2( )if y t  represents a linear functional relationship 

between the electrical load and the emission production as 

given by the following equation. 

 

2 2( )i i i if y y     (5)

    

  

i  and 
i  

are emission constants. 

 

shutstartC ,
 is the cost of starting/shutting of the turbines (GT & 

ST) and is given by, 
1

, , /

0 1

( 1) ( )
M n

start shut i start shut li li

t i

C k u t u t


 

  
 (6)

    

   

where 
, /i start shutk  represent the shut down or start up cost for 

the i
th

 unit. uli(t) and uli(t+1) are the integer states (On/Off) 

of the i
th

 unit at the current and next sampling instance 

respectively. 

ageingC  describes the equipment ageing cost and is defined 

as, 

1
2

,

0 1 2

( )M n
i

ageing i ageing base
t i i

y t
C k

y



 

 
  

 
    (7) 

where,    

,i ageingk is the cost coefficient of ageing for i
th

 unit and 2

base

iy

is the base load for the i
th

 unit which is assumed to be 

constant. The coefficient of ageing, ,i ageingk , may be 

function of load so as to appropriately penalize the operation 

at higher and lower than base loads. Therefore, if a unit is 

operated at base load, the ageing cost is ,i ageingk
 . In case, the 

unit is operated at double the base load, the ageing cost is 

,2 i ageingk
.  

The term revenueC   is the revenue earned from both the 

electric power and heat sales. Thus revenueC  term is 

described as follows, 

1

,Elec 2 ,Heat 3

0 1

( ) ( ) ( ) ( )
M n

revenue i i i i

t i

C p t y t p t y t


 

 
  (8)

    

where, , ( )i Elecp t
, ,Heat ( )ip t are the cost coefficients for the 

sale of electric power and heat respectively. 

B. Constraints 

The above described optimization problem in 

equation (1) is subjected to one or more of the following 

constraints: 

a) Minimum & Maximum load constraints for gas 

turbines coupled with generators 

    ,min ,maxi i iu u u 
   (9)

   

   

b) Ramp up and ramp down constraints for gas 

turbines:
 
 

max

( )id u
ramp

dt
     (10)
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min

( )id u
ramp

dt


    (11)

  

c) Constraint on maximum number of start-ups and 

shut-downs for gas turbines.
 
 

IV. RESULTS AND DISCUSSION 

In this section, three different test cases are considered to 
verify the load scheduling optimization results for the CCPP 
model. The load scheduling optimization problem was 
formulated as a MILP and solved using the dynamic 
optimization framework with LPSolve as MIP solver. 
Optimal load scheduling results presented in this section are 
corresponding to 1-day ahead scheduling with 1 hr sampling 
interval. Load scheduling optimization results obtained for 
the three different case studies are discussed in the 
following sub sections. The electric power and heat demand 
profiles considered in the case studies are depicted in Fig. 2 
and Fig. 3 respectively. These figures also show that actual 
power and heat generated by generating units match exactly 
with the respective demands for all the 3 case studies 
discussed below. 

A. Case-1:Effect of fuel cost in scheduling 

The effect of fuel cost in load scheduling optimization 

for a varying power and heat demand profiles as shown in 

Fig. 2 and Fig. 3 are described in this section. In this case 

study, GTs are considered with different fuel costs                                       

( 1 2 3 fuel fuel fuelk k k  ). i.e., GT-1 has the lower fuel cost 

than GT-2 and GT-2 has lower fuel cost than GT-3. 

 

Fig. 2: Power demand and generation profiles 

 

Fig. 3: Heat demand and generation profiles 

Optimal load scheduling results for gas turbines (GT-1, 

2, 3) are shown in Fig. 4. It has been observed from Fig. 4 

that GT-1 contributes the highest in meeting the power 

demand in comparison to GT-2 and GT-3 because GT-1 has 

the lowest fuel cost. Similarly, GT-2 contributes more in 

meeting the power demand than GT-3. The flue gas output 

from the corresponding gas turbines are then passed to Heat 

recovery steam generators  for steam generation to meet the 

heat demand profile (Fig. 3) for district heaters (DH-1 & 

DH-2) as shown in Fig. 1. In addition to power generation 

by all the gas turbines, the steam turbine utilizes the steam 

generated by HRSGs for the power generation to meet the 

power demand. Power generated by the steam turbine is 

shown in Fig. 4. In the optimization problem, the constraints 

on the maximum number of startups and shutdowns for the 

gas turbine units (maximum Startups and Shutdowns = 2) 

are considered for the prediction horizon of 24 hrs. From the 

load scheduling results in Fig. 4, it is evident that the 

optimizer satisfies these constraints. Consider the GT-3 load 

scheduling profile in Fig. 4. As GT-3 has the highest fuel 

cost, it can be switched off from time 22 to 25 hrs, where 

GT-1 and GT-2 have sufficient reserve power generation 

capacity to take care of power demand. Instead, GT-3 has 

been allocated with minimum load from time 22 hrs to 25 

hrs in order to satisfy the constraint of maximum number of 

shutdowns.  

 

Fig. 4: Optimal power generation scheduling for GTs & ST for Case-1 

B. Case-2: Effect of fuel & emission cost in scheduling 

In addition to the fuel cost of GTs, the emission 

treatment costs are also included into the overall objective 

function. In this case study, gas turbines 1, 2 and 3 are 

considered with increasing order of fuel costs, similar to that 

in case-1               ( 1 2 3 fuel fuel fuelk k k 
). Emission treatment 

costs for the gas turbines are considered in the order,

3 1 2 emission emision emissionk k k 
. It can be observed that GT-3 

has the highest fuel and emission cost in comparison with 

GT-1 and GT-2. On the other hand, GT-1 has lower fuel 

cost than GT-2 but higher emission treatment cost than GT-

3. The results of optimal load scheduling for gas turbines 

(GT-1, 2 and 3) and the steam turbine power generation in 

meeting the varying power demand is shown in Fig. 5. The 

values of the coefficients are chosen such that emission cost 

factor is larger than the fuel cost. Hence, it is expected that 
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GT-2 should contribute highest in power generation and the 

same has been observed from the results in Fig. 5. Since 

GT-3 has the highest fuel and emission handling costs it is 

taking the least part in meeting the power and heat demands. 

Further, at the maximum power demand point, i.e. at time 

instants10 and 21 hours, both GT-1 and GT-2 are operated 

at their maximum generation limit of 45 MW and the rest of 

the power demand is met by ST and GT-3.  

 

Fig. 5: Optimal power generation scheduling for GTs & ST for Case-2 

C. Case-3: Effect of fue, emission and ageing cost in 

scheduling 

In addition to the fuel and emission costs mentioned in 

case-2, the ageing cost for gas turbines is also considered in 

the overall objective function of the optimization to verify 

the effect of ageing in load scheduling. In this case study, 

the following cost (fuel/emission/ageing) variation orders 

are considered: 

Fuel Cost: 1 2 3 fuel fuel fuelk k k 
, 

Emission Cost: 1 3 2 emission emision emissionk k k 
, 

Ageing Cost 1 2 3 ageing ageing ageingk k k 
. 

Among three gas turbines, GT-1 is assumed to have the 

highest emission treatment and ageing costs with respect to 

GT-2 and GT-3. Hence, it is expected that GT-1 should 

contribute the least to meet the power demand as depicted in 

Fig. 6. It can be observed from Fig. 6 that at the maximum 

power demand point, i.e., at time instant 10 and 21 hours, 

both GT-2 and GT-3 are operated at their maximum 

production limit of 45 MW and the rest of the power 

demand is met by ST and GT-1 as expected based on the 

relative values of the cost coefficients. 

 

Fig. 6: Optimal power generation scheduling for GTs & ST for Case-3 

V. FOSSIL FIRED POWER PLANT MODEL 

 
Fig. 7 shows a typical FFPP configuration used in this 

study. Six high pressure (HP) boilers are used to generate 
HP steam and fed into the HP header. There are four steam 
turbines (ST1- ST4) with extractions are utilizing the steam 
from HP header for electric power generation to meet the 
overall power demand. There are three pressure reducing 
valves (PRVs) placed between different headers (PRV1 is 
between HP to intermediate pressure (IP) header, PRV2 is 
between HP to low pressure (LP) header, PRV3 is between 
LP to LP-2 header). There exist three steam stations (HPS, 
IPS & LPS) has their corresponding steam demands (HP, IP, 
LP). Steam to the steam stations are supplied by the 
corresponding steam headers as shown in the figure. 
Further, there are two low pressure (LP) boilers generating 
LP steam and fed to LP-2 header. Load scheduling 
optimization is performed for FFPP model and optimal 
values of load scheduling for boilers’ steam generation set 
points, PRV steam flows, Steam turbines’ extractions and 
makeup water supply in order to meet the overall power and 
steam (HP, IP & LP) demand profiles over a scheduling 
period of 12 hour with a sample interval of 1 hour is 
obtained. For this particular problem, only fuel cost of boiler 
is considered which has different fuel consumption 
characteristics obtained based on the plant data.  

 

Fig. 7: Fossil Fired Power Plant Model developed using the ModelicaTM. 
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The power, HP steam and LP steam demand and expected 

profiles for the FFPP model are shown in Fig. 8, Fig. 9, 

respectively. Fig. 10 shows the distribution of steam 

production between different boilers. 

 
Fig. 8: FFPP Model Power Profile 

 
Fig. 9: FFPP Steam Demand Profile 

 
Fig. 10: FFPP LP Steam Demand 

 

 

VI. CONCLUSIONS 

 
In the current work, combined unit commitment and 

economic load dispatch problem is addressed using MIDO 
framework for CCPP and FFPP model configuration. The 
optimization formulation in this work considers equipment 
ageing cost and startup/shutdown cost also along with 
traditional fuel and emission costs for optimal load 
scheduling. A generalized approach to formulate the ageing 
cost is presented which can be customized and easily 
extended to specific requirements. For instance, one can also 
penalize the ageing effect due to frequent changes in load by 
appropriately including it as ageing cost of the equipment. 
Different case studies are presented to verify the results of 
load scheduling using MIDO based approach. Various 
constraints such as maximum number of start-ups and shut-
downs for the generating units are also considered and the 
effect of the same has also been verified in the case studies. 
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