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Abstract— This paper presents a comparative study of 

Higher Order Sliding Mode (HOSM) Control and first order 

Sliding Mode which is simply known as Sliding Mode Control 

(SMC). This comparative study capacitates one to observe 

performance qualities of both controllers. First, the procedures 

of designing of both techniques are presented. After that for a 

better comparison, both control approaches are optimized 

using Particle Swarm Optimization. Finally, simulation results 

will be showed for the nominal model of a robot manipulator 

which reveal the merits and demerits of both methods. A 

desired path is defined as a tracking task. Although simulation 

results show an overall improvement for HOSM over SMC, the 

latter still displays some good points over the former. 

I. INTRODUCTION 

Undoubtedly, Sliding Mode Control, SMC [1], is one of 
the most frequent and well-liked techniques in the control of 
systems under heavy uncertainty. This method is based on 
maintaining the system in hand close enough to a desired 

hyperplane called Sliding Surface, , which is suitably 
designed to achieve several control goals such as stability 
and tracking. The implementation of SMC can be done by 
high-frequency switching between some control signal's 
values, which results in unfavorable chattering phenomenon 
that is usually extremely dangerous, as it may excite the 
higher order frequencies of the system. 

Having studied the literature, one can find several 
methods to mitigate the chattering problem. An author [1] 
proposes a time-varying switching gain, which does not need 
a new dynamical design. Another method [2] is to use a 
multi-phase SMC. The chattering event can also be 
alleviated by using an observer [3]. Slotine [4] suggested a 
boundary layer which means switching from discontinuous 
to continuous control. 

Having preserved all the good points of SMC, Higher 
Order Sliding Mode (HOSM) [5-6] is a novel approach that 
can eliminate the chattering effect. Instead of using the first 

derivative of, one can use the r-th derivative of the sliding 
surface, which r is the relative degree [4] of the system. This 
technique also has a better degree of accuracy regarding the 
sampling time than the standard SMC. Although there are a 
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great number of articles for SISO systems, HOSM is not 
easily applicable for MIMO ones. Fortunately, second order 
sliding mode can be found in some papers [7-8], and the 
algorithm for designing HOSM for a MIMO system has 
recently published [9]. 

The aim of this article is to compare standard SMC and 
HOSM for a robot manipulator. PUMA 560 [10] is quite a 
common robot in both industry and academic laboratories. 
To draw a better comparison, both control methods are 
optimized by Particle Swarm Optimization (PSO) [11], 
which is an evolutionary algorithm. Merits and demerits of 
both methods are presented. 

The organization of the rest of the paper is as follows: 
section II presents the robot dynamics, section III is about 
control design, section IV talks about PSO, section V 
includes simulation results, and finally, section VI dedicates 
to the conclusion. 

II. ROBOT DYNAMICS AND KINEMATICS 

Basically, robots [12] have three parts: mechanical, 
electrical and control. Mechanical parts are links between 
the base and the end-effector. Electrical parts are for moving 
or rotating the mechanical parts, and last but not least, 
control parts are for timing and organizing the other pars. As 
mentioned before, PUMA 560 is a very popular robot in 
both industrial and academic places. The mathematical 
model as well as parameters is included in several papers, 
e.g. [10]. 

A. Robot dynamics 

Dynamical equation [10] for robots is as (1): 

( ) ( , )M q q N q q                (1) 

, 3x1, is control input vector, q is the joint vector that is 
joints angular position vector, M(q), 3x3, is inertia matrix 

and ( , )N q q , 3x1, is a vector including nonlinear parts 

which refers to gravity force and Coriolis and centrifugal 
terms. 

B. Forward and inverse kinematics 

Forward kinematics deals with the position of the end-

effector when the joints angles are known. Inverse 

kinematics on the other hand, tries to find angles between 

the joints while position of the end-effector is available. In 

order to remain in the valid region of values for robot 

variables, first, one can use the inverse kinematics [13] for 

the desired path of the robot and then, calculate the control 

law according to those values. Hence, the reference angles 

would be always in the valid intervals.
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III. CONTROLLER DESIGN 

The objective of the controllers in this article is tracking 
control in the presence of uncertainty. Torque control of 
PUMA 560, which is a nonlinear uncertain Multi-Input-
Multi-Output system with a wide range of operation, can be 
done using Robust Control methods such as SMC [4] or 
HOSM [9], which their stability has been proved based on 
Lyapunov direct method. Robot parameters are included in 
[10].  

A. Standard SMC design for a MIMO system 

A standard SMC design is presented in [4]. To adapt the 
equations for PUMA 560, one can choose only 3 states for 
state equations. State equations are: 

1 1

2 2

3 3

 ,  ,  ,    

f

X F BU F f U X q

f



     



   

   

   
      

           (2) 

U is the control input, q is as in (1), F is a term for 

nonlinear parts, B is control signal's coefficients, and also: 

ˆˆ( )  ,  ,  , , 1, 2, 3
ij ij i i i

B I B D f f F i j                

(3) 

B̂ is the matrix of nominal values of matrix B, and upper 

bounds of uncertainties are 
i

F  and 
ij

D . 

Regarding (1) and (2), for a robot, one can write: 

1 1ˆ ˆ ( , ) , *B M F M N q q
 

                 (4) 

The sliding surface is as follows: 

( ) , 1, 2, 3 
d

s x x x i
i i i i i idt

                              (5) 

where and  are design parameters, 
1 2 3
, ,x x x are 

state errors, and sliding conditions are: 

21
( ) * sgn( )  ,  1, 2, 3

2
i i i

d
s s i

dt
            

* sgn( )  ,  1, 2, 3
i i i

s s i            (6) 

And 
i

  are design parameters. After few calculations, 

control law would be computed as: 

1ˆ ˆ( - sgn( ))  ,   
d desired

U B X X F K s X X X


        (7) 

K can be evaluated as: 
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       (8) 

which 0
i

   should satisfy sliding conditions, (6).  

B. HOSM controller design for a MIMO system 

The concept of HOSM first presented by Emelyanov et 
al. in 1986 [14]. After that, Levant [15] developed the 
method for SISO systems, and finally, a step-by-step design 
for MIMO systems introduced in [9]. 

State equation is as follows: 

1

( ) ( )  ,  1, ...,

m

i i

i

x f x g x u i m



            (9) 

which x is an n-dimensional state vector, and u is an m-

dimensional control input vector. One can define (x)
i

 as 

sliding variables, which actually are the system outputs, and 

(x)
i

g are smooth uncertain functions. The relative degree 

vector for PUMA 560 is  2 2 2
T

r  . One can define 

B as: 

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

( )

g f g f g f

g f g f g f

g f g f g f

L L L L L L

B x L L L L L L

L L L L L L

  

  

  



 

 

 

  

      (10) 

which is a non-singular matrix and also: 

1
( ) 0  ,  1 , 3 ,  0

k

gj f i i
L L x i j k r


                (11) 

One may define: 

2 2 2

1 2 3
( )

T

f f f
A x L L L               (12) 

In this point, one can evaluate the r-th derivative for each 
sub-system: 

( )( )1

1
... ( ) ( )

T

m

rr m A x B x u              (13) 

To characterize uncertainties, one can write: 

( ) ( ) ( )

( ) ( ) ( )

A

B

A x A x x

B x B x x

  

  





             (14) 

which ( )( ),
BA

xx  are representing uncertain parts, and 

( ), ( )A x B x are referring to nominal parts. We should also 

have two criteria: 
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1

1

( ) ( ) ( ) ( ) ( )

( ) ( ) 1                      

A B

B

x x B x A x x

x B x









   
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



       (15) 

And finally, the control law may compute as: 

1
( )u B A


                (16) 

Higher Order Sliding Mode control would be as follows:

 

1 2

1 , 2 ,

1 , ,

,1 , 2 ,

1 1

                                               

...

( ) ( ) ( ) ( )
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      (17) 
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Defining  as: 

( ) ( ) ( , )

( )                     

nom disc aux

aux nom

z z z z

z z

  



 

 





          (18) 

For 
nom

 ,we have: 

 1 , 2 ,

1 , 1 , 1 , 2 , 2 , 2 ,,
( ) sgn( ) sgn( )

1, 2, 3

i i

i i i i i i i

v v

nom i
z k z z k z z

i

   



(19) 

such that 
2

2 , 1,i i
p k p k   is Hurwitz, and: 

2 ,

2 ,

1 ,

2 ,

 , 1
2

0,

1, 2, 3

i

i

i

i

v v
v

v

i

 






           (20) 

For the discontinuous part of ,
disc

  we have: 

(z) sign( )
disc

G S               (21) 

which S and G(z) may compute as: 

1 2 3
,1 ,2 ,3r r r

S z z z  
 

             (22) 

0

(1 ) (z) (x)

(z)  , 
nom

G   

      



       (23) 

In this point, one can calculate , and then, according to 

(16), the control signal would be available. 

 

IV. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) in an evolutionary 
algorithm first presented by Kennedy and Eberhart [16]. 
PSO was inspired from flocks of birds or schools of fish 

looking for food. The main concept behind PSO is that birds 
(solutions) are flown through the search space to find 
feasible and optimum answers. The global best value of each 
particle (pbest,i), and the global best value of all particles 
(gbest) be stored then to find the best answer. The basic steps 
of PSO are as follows [11]: 

1) Define a swarm of particles in the search space with 
random positions. 

2) Define a fitness function for comparing the obtained 
solutions. 

3) Evaluate the fitness function for current solutions and 
update the particle's best value (pbest,i). 

4) Draw a comparison among all best solutions (pbest,i) 
to find the best solution so far, which is a solution 
with minimum fitness function value, and update the 
global best value (gbest). 

5) Calculate the next displacement of particles 
according to their current speed, their best value 
(pbest,i), and the global best value (gbest). A possible 
equation for the next displacement of each particle 
would be as: 

6) 

( 1) ( ) ( ) ( )

1 1 2

( )

2 3

( 1) ( ) ( )

* * ( )

* ( )

                             

i i i i

d d d d

i

d d

i i i

d d d

v c v r c p x

r c g x

v x v





   



 









      (24)      

which d is the dimension of the search space, i is the 

number of current iteration, 
1 2
,r r are random 

numbers between (0,1), c1, c2 and c3 are constants, 

and 
( )i

d
x  is the position of the particle in the d-th 

dimension, and finally, 
( )i

d
v  is the speed of the 

particle for the next displacement. 
7) If the ending criteria have been met, return the best 

values. Otherwise, jump to number (3). 
In this paper, a PSO with swarm of 20 particles has been 

used to optimize the control parameters. The number of 
iterations is 100 and number of informants would be 3 for 
each particle. The confinement rules have been applied in 
order to prevent the particle from leaving the search space. 
The performance index is the same as fitness function which 
is the total of squared errors of all joint variables. The 
optimal parameters for both methods are presented in Tables 
I and II.  

V. SIMULATION RESULTS 

Simulation results for both techniques are presented 
using MATLAB m-files. 

A. Standard SMC results 

In order to mitigate the Chattering phenomenon, a 
boundary layer with magnitude of 0.03 [4] has been 
established. All uncertainty functions in the simulations are 
of Sine nature. The desired path which showed in Fig. 1 is as 
follows: 

0.3 0.2 sin( / 5)

0.3 0.2 cos( / 5)  ,  0

0.3 0.2 cos( / 5)

x

y

z

p t

p t t

p t

  

   

  








        (25) 
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Nominal model of PUMA 560 has been optimized using 
PSO. The control parameters for both optimized and non-
optimized controllers are gathered in Table I, and control 
effort and error of position control depicted in Fig. 2 and 
Fig. 3. 

B. HOSM controller results 

The biggest advantage of HOSM is its chattering-free 
nature. Design parameters of both optimized and non-
optimized are presented in Table I, and control effort and 
error of position control showed in Fig. 4 and Fig. 5. 

 
As mentioned before, in order to have a better 

comparison, both methods are optimized using Particle 
Swarm Optimization. In this context, optimization means 
running the nominal model of PUMA 560 repeatedly in 
order to minimize the total energy of control signals, which 

showed by 
2

 in Table III. The terminating criteria are 

either reaching 100 iterations or detecting a steady state error 
for the position control less than 1 mm, which both are 
sound criteria in simulation results. 

For further examination, a disturbance with a magnitude 
of 20% of the desired values and a duration of 5 seconds 
applied to the state equations in order to study of the 
robustness. The robustness of both systems are perfect and 
both methods can attenuate the disturbance quickly, but 
HOSM is faster in this regard.  

The response speed is another concern to investigate. 
The response speed of HOSM is 3.04 seconds, which is a 
very rapid response. Response speed of SMC is about 3.9 
seconds which reveals the superiority of HOSM in this 
matter. Table III represents a better interpretation of both 
methods in this discussion. Both accuracy and settling time 
have been improved, but control effort index of HOSM is 
almost twice as big as that of standard SMC. This is one of 
the reasons why the settling time (response speed) and 
accuracy of HOSM is better than SMC. Another possible 
reason is the nature of the control design of HOSM which is 
also able to eliminate the chattering phenomenon. In high 
percentage of cases which only steady state errors matter, 
standard SMC would be economically more efficient over 
HOSM method. Save for that merit, standard SMC has been 
improved in its novel version, HOSM. 

 

TABLE I. DESIGN PARAMETERS OF STANDARD SMC 

Param. 
 
Method  

      

Optimal 
SMC

 
2.06 

 
1.325 

 
1.9148 

 
0.080 

 
0.0572 

 
0.0364 

 

Non-
optimal 

SMC 

 
5 

 
5 

 
5 
 

 
0.001 

 
0.001 

 
0.001 

 

 

 

 

 

TABLE II. DESIGN PARAMETERS OF HOSM 

Method 
Parameter 

Optimal  
HOSM 

Non-optimal  
HOSM 

K11 12.2000 12 

K12 4.5000 12 

K13 11.7160 12 

K21 9.5568 7 

K22 3.0525 7 

K23 11.1818 7 

V1 0.6148 0.9 

V2 0.4702 0.9 

V3 0.4207 0.9 

 
 
 
 
 

TABLE III. COMPARISON OF PERFORMANCE INDICES 

Performance 

Index 

 

Method 

 

2
  

 

2
( )e q  

 

Settling 

Time 

(Sec) 

 

Optimal 

HOSM 

 

6.7063e+005 

 

243.8369 
 

3.04 

 

Optimal 

standard 

SMC 

 

2.8033e+005 

 

592.5962 
 

3.87 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The desired path 
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(a) Control effort 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Error of position control 
Figure 2. Non-optimized standard SMC: (a) control effort (b) error of 

position control 

 
 
 
 
 
 
 
 
 
 
 

(a) Control effort 

 

 
 
 
 
 
 
 
 
 
 

 

(b) Error of position control 

Figure 3. Optimized standard SMC: (a) control effort (b) error of 

position control 

 

 

 

 

 

 

 

(a) Control Effort 

 

 

 

 

 

 

(b) Error of position control 

Figure 4. Non-optimized HOSM: (a) control effort (b) error of position 
control 

 
 
 
 
 
 
 
 
 
 
 

 
 

(a) Control effort 
 
 
 
 
 
 
 
 
 
 
 

(c) error of position control 
 

(b) Error of position control 
Figure 5. Optimized HOSM: (a) control effort (b) error of position control 
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VI. CONCLUSION 

A comparison has been drawn between two different 
types of controllers that designed based on sliding mode 
concept. To draw a distinction between HOSM and standard 
SMC, the simulation results for PUMA 560 have been 
presented for both methods, and in order to have a better 
comparison, both control strategies are optimized using 
Particle Swarm Optimization. From an energy-saving point 
of view, the standard SMC needs smaller amount of control 
effort in comparison to HOSM control scheme. The HOSM 
technique, on the other hand, shows better accuracy and 
settling time. Moreover, the control signal would be 
chattering-free. Although HOSM has more advantages over 
standard SMC, the latter is economically efficient in 
comparison to the former. 
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