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Abstract— A method to construct an inverse LQ regulator
of neutral systems with time-varying delay is known. Using
it, the feedback gain is calculated with a solution of a finite
dimensional LMI, and the feedback law is implemented without
real time integral operation. In this paper, it is shown that the
regulator obtained by the above method has good robustness
property against some class of static nonlinear perturbations or
dynamic linear perturbations as well as finite dimensional LQ
regulators. The resulting system is evaluated with a numerical
example.

I. INTRODUCTION

A system with time delay belongs to a class of infinite

dimensional systems. To construct a linear quadratic (LQ)

regulator of such a system, generally a solution of an infinite

dimensional Riccati equation is needed, and the feedback

law contains a real time integral operation which is not easy

to implement [1], [2], [3]. On the other hand, a method

to construct an inverse LQ regulator of systems with time

delay of retarded type is known, where the designer cannot

assign the weights in the cost functional previously, but he

can construct it with a solution of a finite dimensional linear

matrix inequality (LMI) and the resulting feedback law does

not contain a real time integral operation [4]. Recently, this

method of designing the inverse LQ regulator was extended

to neutral systems with time-varying delay [5].

In this paper, it is shown that the inverse LQ regulator,

constructed with the above method, of neutral systems with

time-varying delay has good robustness property against

some class of static nonlinear perturbations or dynamic

linear perturbations in the input channel as well as finite

dimensional LQ regulators. The technique used here is a

natural extension of one by Safonov and Athans, who treated

the robustness property of finite dimensional LQ regulator

[6]. In Section 2, the problem is formulated. In Section 3, the

robust stability is examined, and in Section 4, it is evaluated

with a numerical example.

II. FORMULATION

As a plant, let us consider the following neutral system

with a time-varying delay discussed in [7];






ẋ(t) = A0x(t) +A1x(t− h(t)) +A−1ẋ(t− L)
+Bu(t), t > 0,

x(t) = φ(t), t ∈ [−r, 0],
(1)
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where x(t) ∈ R
n is the state variable; u(t) ∈ R

m is the

control input; A0, A1, A−1 and B are coefficient matrices

with appropriate dimensions; 0 ≤ L ∈ R is a constant delay;

h(t) ∈ R is a time-varying delay satisfying

0 ≤ h(t) ≤ hu, (2)

ḣ(t) ≤ g < 1, (3)

where hu is a constant; r is defined to be max{hu, L}; g is

defined to be the supremum of ḣ(t); and the initial condition,

φ(t), is a continuously differentiable initial function of t ∈
[−r, 0].

Introducing an auxiliary variable w(t) ∈ R
n, system (1)

is rewritten as

ẇ(t) = A0w(t) +A1x(t− h(t)) +A0A−1x(t− L)

+Bu(t), (4)

x(t) = w(t) +A−1x(t− L).

In order to construct an inverse LQ regulator, we assume that

the plant parameters satisfy the following condition.

Condition 1: There exist

0 < P0 = PT
0 ∈ R

n×n,

0 < P1 = PT
1 ∈ R

n×n,

0 < P2 = PT
2 ∈ R

n×n,

0 < R = RT ∈ R
m×m

such that

Q =





Q1 ⋆ ⋆

Q2 Q3 ⋆

Q4 0 Q5



 > 0 (5)

where

Q1 = −AT
0 P0 − P0A0 − P1 − P2 + P0BR−1BTP0,

Q2 = −AT
−1

(

AT
0 P0 + P1 + P2

)

,

Q3 = P2 −AT
−1(P1 + P2)A−1,

Q4 = −AT
1 P0,

Q5 = (1− g)P1,

and ⋆ denotes a symmetric block in the matrix.

Using solutions P0 and R of the above inequality (5), a

feedback law is constructed as

u(t) = −R−1BTP0w(t) (6)
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which gives a closed-loop system

ẇ(t) = (A0 −BR−1BTP0)w(t) +A1x(t− h(t))

+A0A−1x(t− L), (7)

x(t) = w(t) +A−1x(t− L).

The next lemma was shown in [5].

Lemma 1: Under Condition 1, Q̂(t) satisfies

Q̂(t) =





Q1 ⋆ ⋆

Q2 Q3 ⋆

Q4 0 Q̂5(t)



 > 0 (8)

where

Q̂5(t) = (1 − ḣ(t))P1.

By using Lemma 1, the following lemmas about the asymp-

totic stability and the optimality of the resulting closed-loop

system were shown in [5].

Lemma 2: [Asymptotic Stability of Inverse LQ Regulator]

Under Condition 1, the closed-loop system (7) is asymptot-

ically stable.

Lemma 3: [Optimality of Inverse LQ Regulator] Under

Condition 1, the feedback law (6) is the optimal control

minimizing the cost functional

J =

∫

∞

0

{

zT (t)Q̂(t)z(t) + uT (t)Ru(t)
}

dt (9)

where

z(t) =
[

wT (t) xT (t− L) xT (t− h(t))
]T

.

In this paper, it is shown that the closed-loop system

has good robustness property against some class of static

nonlinear perturbations or dynamic linear perturbations in the

input channel as well as finite dimensional LQ regulators.

III. ROBUST STABILITY

The robust stability of ordinary LQ regulators for systems

without time delay can be quantitatively characterized in

terms of the classical notions of gain and phase margin [6].

It is widely known that the LQ regulators have

1) infinite gain margin, 50% gain reduction tolerance, and

2) at least ±60◦ phase margin.

In this section, it is shown that the inverse LQ regulator

for neutral systems with time-varying delay has equal robust

stability with the ordinary finite dimensional LQ regulator

by employing the techniques by Safonov and Athans [6].

First, let us consider a situation in which a static nonlinear

perturbation is inserted in the input channel of the closed-

loop system. Then the control input is rewritten as

u(t) = f [v(t)] (10)

v(t) = −R−1BTP0w(t) (11)

where f(v) is a nonlinear function which gives a unique

solution to the closed-loop system. The following theorem

then holds.

Theorem 1: Under Condition 1, if f(v) satisfies

1

2
vT (t)Rv(t) ≤ vT (t)Rf(v) (12)

f(0) = 0, (13)

then the closed-loop system with f(v) inserted is asymptot-

ically stable.

Proof: First, integrating (12) for any τ ≥ 0 and using (10),
∫ τ

0

{

2vT (t)Ru(t)− vT (t)Rv(t)
}

dt ≥ 0. (14)

Next, we employ the following functional V (t) in [5].

V (t) = V0(t) + V1(t) + V2(t) (15)

V0(t) = wT (t)P0w(t) (16)

V1(t) =

∫ t

t−h(t)

xT (θ)P1x(θ)dθ (17)

V2(t) =

∫ t

t−L

xT (θ)P2x(θ)dθ. (18)

Differentiating V (t) by the time t along the solutions to (7),

we have

V̇0(t) = ẇT (t)P0w(t) + wT (t)P0ẇ(t)

= {A0w(t) + A1x(t− h(t))

+A0A−1x(t− L) +Bu(t)}TP0w(t)

+wT (t)P0{A0w(t) +A1x(t− h(t))

+A0A−1x(t− L) +Bu(t)}

= zT (t)





AT
0 P0 + P0A0 ⋆ ⋆

AT
−1A

T
0 P0 0 ⋆

AT
1 P0 0 0



 z(t)

+uT (t)BTP0w(t) + wT (t)P0Bu(t)

= zT (t)×




AT
0 P0 + P0A0 − P0BR−1BTP0 ⋆ ⋆

AT
−1A

T
0 P0 0 ⋆

AT
1 P0 0 0



 z(t)

+wT (t)P0BR−1BTP0w(t)

+uT (t)BTP0w(t) + wT (t)P0Bu(t), (19)

V̇1(t) = xT (t)P1x(t)

−(1− ḣ(t))xT (t− h(t))P1x(t− h(t))

= {w(t) +A−1x(t − L)}TP1{w(t) +A−1x(t − L)}

−(1− ḣ(t))xT (t− h(t))P1x(t− h(t))

= zT (t)×




P1 ⋆ ⋆

AT
−1P1 AT

−1P1A−1 ⋆

0 0 −(1− ḣ(t))P1



 z(t),

(20)

V̇2(t) = xT (t)P2x(t)− xT (t− L)P2x(t− L)
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= {w(t) +A−1x(t − L)}TP2{w(t) +A−1x(t − L)}

−xT (t− L)P2x(t− L)

= zT (t)





P2 ⋆ ⋆

AT
−1P2 AT

−1P2A−1 − P2 ⋆

0 0 0



 z(t). (21)

So

V̇ (t) = V̇0(t) + V̇1(t) + V̇2(t)

= −zT (t)Q̂(t)z(t) + wT (t)P0BR−1BTP0w(t)

+uT (t)BTP0w(t) + wT (t)P0Bu(t). (22)

In addition, by using (10) and (11), the above equation gives

V̇ (t) = −zT (t)Q̂(t)z(t) + vT (t)Rv(t)

−vT (t)Ru(t)− uT (t)Rv(t)

= −zT (t)Q̂(t)z(t)

−
{

2vT (t)Ru(t)− vT (t)Rv(t)
}

. (23)

Integrating both sides from 0 to τ ,
∫ τ

0

V̇ (t)dt = −

∫ τ

0

zT (t)Q̂(t)z(t)dt

−

∫ τ

0

{

2vT (t)Ru(t)− vT (t)Rv(t)
}

dt,

(24)

then

V (0) = V (τ) +

∫ τ

0

zT (t)Q̂(t)z(t)dt

+

∫ τ

0

{

2vT (t)Ru(t)− vT (t)Rv(t)
}

dt.

(25)

In the right hand side of the above equation, the first term

is V (τ) > 0 ∀τ > 0, and the third term is a positive value

from (14). Therefore we have

V (0) ≥

∫ τ

0

zT (t)Q̂(t)z(t)dt. (26)

Although the left hand side is a constant decided by the

initial value, the right hand side is monotone increasing from

Lemma 1. This means that the limit of the right hand side

of (26) exists as τ → ∞. So we have

V (0) ≥

∫

∞

0

zT (t)Q̂(t)z(t)dt, (27)

which means that

lim
t→∞

zT (t)Q̂(t)z(t) = 0, (28)

and

lim
t→∞

x(t) = 0 (29)

is obtained.

Next, let us consider a situation in which a stable dynamic

linear perturbation is inserted in the input channel. Using a

stable transfer function matrix Ξ(s), the control input is then

rewritten as

u(t) =

∫ t

0

ξ(t− τ)v(τ)dτ (30)

v(t) = −R−1BTP0w(t), (31)

where ξ(t) is the impulse response matrix of Ξ(s). The

following theorem then holds.

Theorem 2: Under Condition 1, if Ξ(s) satisfies

Ξ∗(jω)R +RΞ(jω)−R ≥ 0 ∀ω ∈ R, (32)

then the closed-loop system with Ξ(s) inserted is asymptot-

ically stable. Ξ∗(·) denotes here the complex-conjugate of

ΞT (·).

The following lemma by Okada and Ikeda [8] gives the key

to prove the above theorem.

Lemma 4: If inequality (32) is satisfied, then the following

inequality holds:
∫ τ

0

{

2vT (t)Ru(t)− vT (t)Rv(t)
}

dt ≥ 0 (33)

∀τ > 0.

Using this lemma, Theorem 2 can be proved.

Proof of Theorem 2: From Lemma 4, (33) holds. Using

similar arguments to the proof of Theorem 1, we know

equation (29). Hence the closed-loop system with stable Ξ(s)
inserted is asymptotically stable.

In addition to the above discussion, as a restricted class,

we consider the following assumptions.

Assumption 1: Each input channel is mutually indepen-

dent.

Assumption 2: The matrix R of the cost functional (9) is

diagonal.

Under Assumption 1, a static nonlinear perturbation f(v) is

rewritten as

f(v) =











f1(v1)
f2(v2)

...

fm(vm)











, (34)

where vi is the i-th element of the vector v. Moreover, under

Assumption 2, for the each element vi of inequality (12),

1

2
vTi (t)Rvi(t) ≤ vTi (t)Rfi(vi)

can be reduced to

1

2
v2i (t) ≤ vi(t)fi(vi), (35)

fi(0) = 0. (36)

192



As a special case, if fi is a linear function, the above

inequality is then equivalent to

fi(vi) = βivi(t), βi ≥
1

2
. (37)

This means that even though the perturbation of the control

input reduces the original feedback gain to 50%, the pertur-

bation does not destabilize the closed-loop system.

On the other hand, under Assumption 1, the matrix Ξ(jω)
is rewritten as

Ξ(jω) =







Ξ1(jω) 0
. . .

0 Ξm(jω)






. (38)

In addition, under Assumption 2, inequality (32) is reduced

to

2×ℜ[Ξi(jω)] ≥ 1 (i = 1, 2, · · · ,m). (39)

In particular, if each element of Ξ(jω) is replaced by

Ξi(jω) = ejφi(ω) (i = 1, 2, · · · ,m) (40)

where φi is a phase shift, then inequality (39) gives

ejφi + e−jφi ≥ 1 (i = 1, 2, · · · ,m) (41)

or

|φi| ≤ 60◦. (42)

This indicates that the phase shift −60◦ ≤ φi ≤ 60◦ of the

control input does not destabilize the closed-loop system.

Thus, it is shown that the inverse LQ regulator proposed in

[5] has the good robustness properties as well as the ordinary

finite dimensional LQ regulator.

IV. DESIGN PROCEDURE

To construct the inverse LQ regulator, it is necessary to

solve the bilinear matrix inequality (BMI) (5) of Condition

1. So a design procedure is proposed in [5] where a solution

of BMI (5) can be found as a solution of some LMIs. In this

section, we show an alternative method, which uses modified

LMIs to obtained a solution of BMI (5), to construct the

inverse LQ regulator. Here we assume that parameters of the

system (4) satisfy the following condition.

Condition 2: Given scalars 0 < a ∈ R and 1 < b ∈ R.

There exist

0 < S = ST ∈ R
n×n

0 < T = T T ∈ R
m×m

such that

Ψ =





Ψ1 ⋆ ⋆

Ψ2 Ψ3 ⋆

Ψ4 0 Ψ5



 > 0 (43)

Ψ̃ =

[

cS ⋆

SAT
−1 S

]

> 0 (44)

where

Ψ1 = −SAT
0 −A0S − (a+ b)S +BTBT ,

Ψ2 = −SAT
−1

{

AT
0 + (a+ b)I

}

,

Ψ3 = (b − 1)S,

Ψ4 = −SAT
1 ,

Ψ5 = a(1 − g)S,

and c = (a+ b)−1.

Now the following lemma holds.

Lemma 5: Using the solutions S and T satisfying Con-

dition 2, the matrices P0, P1, P2 and R can be calculated

as

P0 = S−1,

P1 = aS−1,

P2 = bS−1,

R = T−1,

where these solutions are simultaneously satisfying Condi-

tion 1.

Proof: Applying Schur Complement, the LMI (44) and

Ψ̃3 = S − SAT
−1(a+ b)S−1A−1S > 0 (45)

are equivalent. Using the above inequality and LMI (43),

Ψ0 = Ψ+ block-diag
{

0, Ψ̃3, 0
}

> 0 (46)

is obtained. Pre- and post-multiplying the matrix Ψ0 by

S−1
b = block-diag

{

S−1, S−1, S−1
}

,

we have

S−1
b Ψ0S

−1
b = Q,

so that Q > 0 from the inequality (46).

The solutions satisfying Condition 1 can be obtained to

construct the feedback law

u(t) = −R−1BTP0w(t), (47)

which yields the inverse LQ regulator. If Assumption 2 is to

be held, it is significant to note that LMIs (43) and (44) must

be solved as the matrix T is diagonal because the matrix R

is calculated as T−1.
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Fig. 1. Open-loop system
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Fig. 2. Nominal closed-loop system

V. NUMERICAL EXAMPLES

Let us consider a system with the following parameters

A0 =

[

0 1
0 0

]

, A1 =

[

0.2 0.4
0.1 0.3

]

,

A−1 =

[

0.15 0.20
0.25 0.10

]

, B =

[

0
1

]

,

time-delays

L = 0.5, h(t) = 0.5 sin(t) + 0.5,

and initial condition

φ(t) =

[

0
1

]

(−r ≤ t ≤ 0).

As the maximum of the time-delay, g is given as

g = max
t

{

ḣ(t)
}

= 0.5.
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Fig. 3. Static nonlinear perturbation
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Fig. 4. Dynamic linear perturbation

By using MATLAB to solve the LMIs (43) and (44), if we

choose scalars as

a = 0.5, b = 1.1,

then solutions S and T are

S =

[

23.2406 −26.9483
−26.9483 34.5140

]

, T = 89.8673.

So

P0 =

[

0.4546 0.3550
0.3550 0.3061

]

, R = 0.0111

is obtained. Then the feedback law is constructed as

u(t) = −
[

31.9003 27.5113
]

w(t). (48)

The time responses of the

1) open-loop system

2) nominal closed-loop system
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3) closed-loop system with a static nonlinear perturbation

f(v) = sin v(t) + 5v3(t) + 4v(t) (49)

4) closed-loop system with a dynamic linear perturbation

Ξ(s) =
2s+ 1

3s+ 0.5
(50)

are shown in Figure from 1 to 4.

The open-loop system for free response is unstable as Fig.

1 shows. Fig. 2 shows the time response of the nominal

closed-loop system. So we have an asymptotically stable

system applying the feedback law (48) for the system.

Moreover, the figures 3 and 4 indicate that the resulting

system remains robustly stable when these perturbations are

inserted to the control input.

VI. CONCLUSIONS

In this paper, it was shown that the inverse LQ regulator

for systems with a time-varying delay had good robustness

properties in terms of gain and phase margin, in which

the closed-loop system had infinite gain margin, 50% gain

reduction tolerance and ±60◦ phase margin. As a result,

the inverse LQ regulator had good robust stability as well

as the ordinary finite dimensional LQ regulator. Finally, the

robustness of the inverse LQ regulator was evaluated with a

numerical example.
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