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Abstract— In the present paper, we discuss a design method
for a multirate system, in which the update interval of the
control input is shorter than the sampling interval of the plant
output. In this multirate system, the intersample output may
oscillate between sampled outputs even if the sampled output
converges to the reference input because the control input
can be changed between sampled outputs. In the conventional
method, intersample ripples can be eliminated independently of
the sampled response. However, this method is not valid when
a controlled plant has an integrator. In the present study, we
discuss this problem and propose a method by which to relax
the problem constraints.

I. INTRODUCTION

In the present paper, we discuss a design method for a
multirate system [1], in which the sampling interval of the
plant output is an integer multiple of the update interval of
the control input. In a multirate system, the plant output may
oscillate between sampled outputs even if the sampled output
settles to the set-point [2]. Intersample ripples can be elimi-
nated by using a generalized holder [3], [4]. However, in the
proposed method, both intersample and sampled responses
are designed simultaneously, and the sampled response is
changed.

For the case in which the discrete-time performance
is optimized, the sampled response should be maintained.
Therefore, the purpose of the present study is to design
the intersample response without changing the pre-designed
sampled response. In a design method for a multirate system,
intersample ripples can be eliminated in the steady state
independently of the sampled response [5]. In the conven-
tional method, a controller is redesigned independently of
the sampled response so that the steady-state ripples are
eliminated. In the present study, we discuss the condition
that invalidates the conventional design method and propose
a method by which to resolve this problem.

II. CONTROLLED PLANT

In the present study, the actual controlled plant is a
continuous-time system. However, we discuss a design
method for a multirate system, in which the control input is
updated every step, but the plant output is sampled every two
steps, rather than every step. Hence, a single-input single-
output single-rate system is converted to a two-input single-
output single-rate system using lifting [6].
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Consider the following multirate first-order plus integrator
system:

A[z−1
2 ]y(k) = B[z−1

2 ]T u(k − 2) (1)

A[z−1
2 ] = (1 − z−1

2 )(1 + az−1
2 )

B[z−1
2 ] =

[
B1[z−1

2 ] B2[z−1
2 ]

]T

u(k) =
[

u(k) u(k + 1)
]T

where y(k) is the sampled plant output, u(k) is the control
input in discrete time, and z−1

1 denotes the one-step back-
ward shift operator, z−1

1 y(k) = y(k − 1) and z−1
j = z−j

1 .

III. CONVENTIONAL METHOD AND ITS
WEAKNESS

The lifted single-rate system is assumed to be stabilized
using the following control law:

Y [z−1
2 ]u(k) = K[z−1

2 ]r(k) − X[z−1
2 ]y(k) (2)

Y [z−1
2 ] =

[
Y1[z−1

2 ] 0
0 Y2[z−1

2 ]

]

K[z−1
2 ] =

[
K1[z−1

2 ]
K2[z−1

2 ]

]

X[z−1
2 ] =

[
X1[z−1

2 ]
X2[z−1

2 ]

]

where Y [z−1
2 ] and X[z−1

2 ] must be designed such that
a closed-loop system is stabilized because of the above-
mentioned assumption. Furthermore, K[z−1

2 ] is assumed to
be designed to have the plant output converge to the given
reference input. The closed-loop system with the control law
is given as follows:

y(k) =
z−1
2 Y B[z−1

2 ]T K[z−1
2 ]

T [z−1
2 ]

r(k) (3)

T [z−1
2 ] = A[z−1

2 ]YP [z−1
2 ] + z−1

2 Y B[z−1
2 ]T X[z−1

2 ] (4)

Y B[z−1
2 ] =

[
B1[z−1

2 ]Y2[z−1
2 ] B2[z−1

2 ]Y1[z−1
2 ]

]T

YP [z−1
2 ] = Y1[z−1

2 ]Y2[z−1
2 ]

The multirate control law is extended as follows:

Y e[z−1
2 ]u(k) = K[z−1

2 ]r(k) − Xe[z−1
2 ]y(k) (5)

Y e[z−1
2 ] = Y [z−1

2 ] − z−1
2 Uu[z−1

2 ]B[z−1
2 ]T

Xe[z−1
2 ] = X[z−1

2 ] + Uy[z−1
2 ]A[z−1

2 ]

where Uu[z−1
2 ] and U y[z−1

2 ] are design parameters. Using
the extended control law, the closed-loop system is given as
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follows:

y(k) =
z−1
2 Y B[z−1

2 ]T K[z−1
2 ]

Te[z−1
2 ]

r(k) (6)

Te[z−1
2 ] = T [z−1

2 ] + T̄e[z−1
2 ]

T̄e[z−1
2 ] = z−1

2 A[z−1
2 ]Y B[z−1

2 ]T (Uy[z−1
2 ] − Uu[z−1

2 ])

The extended closed-loop system is changed from the orig-
inal closed-loop system. Here, U u[z−1

2 ] and U y[z−1
2 ] are

designed as follows:

Uu[z−1
2 ] =

[
U1[z−1

2 ]B2[z−1
2 ]Y1[z−1

2 ]
U2[z−1

2 ]B1[z−1
2 ]Y2[z−1

2 ]

]
(7)

Uy[z−1
2 ] =

[
U2[z−1

2 ]B2[z−1
2 ]Y1[z−1

2 ]
U1[z−1

2 ]B1[z−1
2 ]Y2[z−1

2 ]

]
(8)

Using Eqs. (7) and (8), the extended closed-loop system is
the same as the original system because T̄e[z−1

2 ] = 0 can
be achieved independently of the selection of U1[z−1

2 ] and
U2[z−1

2 ]. Therefore, the reference response in discrete time
is maintained [5].

Using the extended control law, the transfer function from
the reference input to the control input is given as follows:

u(k)
r(k)

=(A[z−1
2 ]Y e[z−1

2 ] + z−1
2 Xe[z−1

2 ]B[z−1
2 ]T )−1

·A[z−1
2 ]K[z−1

2 ] (9)

For the case in which the steady-stage gains in (9) are
equivalent, intersample ripples can be eliminated in the
steady state [7]. In the extended control system, if the design
parameters U1[z−1

2 ] and U2[z−1
2 ] are designed such that the

following equation is satisfied, the intersample ripples can
be eliminated in the steady state:

(A[1]B1[1]B2[1](Y2[1] − Y1[1])
+ A[1](Y1[1]B2[1]2 + Y2[1]B1[1]2))(U1[1] − U2[1])
= A[1](Y1[1] − 1) + X1[1](B1[1] + B2[1])
− B1[1] + B2[1] (10)

However, the above equation cannot always be satisfied if
an integrator is included in the plant model. Equation (10)
cannot be satisfied using U1[z−1

2 ] and U2[z−1
2 ] because the

left-hand side of Eq. ((10)) will be 0.

IV. SIMPLIFICATION OF THE CONTROLLED
OBJECTIVE

In the conventional method [5], the steady-state intersam-
ple ripples cannot be eliminated using U1[z−1

2 ] and U2[z−1
2 ]

when an integrator is included in the controlled plant.
For the case in which the reference input is a ramp

function, even if the plant output does not converge to the
ramp-type reference input, the difference or differential of the
plant output follows the gradient of the reference input, and a
control objective may be achieved. Therefore, in the present
study, the controlled variable is changed to the difference
or differential of the plant output, and a control system is
designed.

In the present study, ∆y(k) is defined as a new controlled
variable, and ∆(= 1 − z−1

2 ) in A[z−1
2 ] is eliminated as

follows:

A[z−1
2 ]y(k) = Ā[z−1

2 ]∆y(k) (11)

Ā[z−1
2 ] = 1 + az−1

2

∆y(k) = (1 − z−1
2 )y(k)

Hence, the plant model is rewritten as follows:

Ā[z−1
2 ]∆y(k) = B[z−1

2 ]T u(k − 2) (12)

In this case, the control objective is to have the difference of
the plant output, ∆y(k), follow the reference input, which is
the gradient of the ramp-type reference input. Furthermore,
in the extended control system, Ā[z−1

2 ] is used instead of
A[z−1

2 ], and the design parameters U1[z−1
2 ] and U2[z−1

2 ] can
be designed such that the intersample ripples are eliminated
in the steady state.

V. NUMERICAL EXAMPLES

Consider the following transfer function.

G(s) =
1

s(s + 1.8)
(13)

The control input is assumed to be updated at intervals of
1 [s], but the plant output is sampled at intervals of 2 [s].
The control objective is to have the differential plant output
converge to the set point.

In this case, a multirate system is obtained as follows:

(1 − 0.027z−1
2 )(1 − z−1

2 )y(k)

= [0.51 + 0.025z−1
2 0.30 + 0.24z−1

2 ]u(k − 2) (14)

Using the following multirate control law, the sampled output
∆y(k) can follow the step-type reference input:[

1.0 + 0.43z−1
2 0

0 1.0

]
u(k)

=
[

0.37
0.37

]
r∆y(k) −

[ −1.8 − 0.38z−1
2

1.0

]
∆y(k) (15)

where ∆y(k) denotes the reference input to be followed by
∆y(k) and is set to 1. The simulation results obtained using
the control law given by Eq. (15) are shown in Figs. 1
through 4. The output and input responses are shown in
Figs. 1 and 4, respectively. Fig. 2 shows the trajectory of
∆y(k), and the sampled output ∆y(k) converges to the
set point. Fig. 3 shows the differential of the continuous-
time output response, dy(t)

dt , and so the intersample output
oscillates (see Fig. 1). This is because the control input
oscillates between sampled outputs (see Fig. 4).

In order to compensate the intersample oscillation without
changing the sampled response, the control law given by
Eq. (15) is extended to Eq. (5), where U1[z−1

2 ] and U2[z−1
2 ]

are set to be −3.0 and 0, respectively. The control results
obtained using the extended control law is shown in Figs. 5
through 8. The trajectory of the sampled output ∆y(k) is
shown in Fig. 6 and is the same as that given by Eq. (15).
However, the differential of the continuous-time output does
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Fig. 1. Output response obtained using the conventional method
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Fig. 2. Sampled output response obtained using the conventional method

not oscillate in the steady state (see Fig. 7). Therefore, Fig. 5
shows that the intersample ripples are eliminated.

The trajectories of the plant output obtained by both the
conventional and proposed multirate control laws are shown
in Fig. 9. An enlarged view of Fig. 9 is shown in Fig. 10.
From these figures, the sampled response is maintained, and
the intersample ripples are eliminated using the extended
control law.

VI. CONCLUSIONS

In the present paper, we discussed a design method for a
multirate system, in which the sampling interval of the plant
output is an integer multiple of the update interval of the
control input. In a multirate system, intersample ripples may
occur between sampled outputs even if the sampled output
converges to the reference input. In the conventional method
[5], intersample ripples can be eliminated independently of
the sampled reference response. However, the conventional
method is not valid if the controlled plant has an integrator.
In the present study, the controlled variable is changed from
y(k) to ∆y(k), and, as a result, this restriction is relaxed.
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Fig. 3. Differential plant output obtained using the conventional method
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Fig. 4. Input response obtained using the conventional method
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Fig. 5. Output response obtained using the proposed method
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Fig. 6. Sampled output response obtained using the proposed method
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Fig. 7. Differential plant output obtained using the proposed method

0 5 10 15 20 25 30 35 40 45 50

0.4

0.5

0.6

0.7

0.8

0.9

1

time[s]

co
nt

ro
l i

np
ut

Fig. 8. Input response obtained using the proposed method
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Fig. 9. Merged output figure
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Fig. 10. Enlarged view of Fig. 9
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