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Abstract— Optimization problem is one of the most difficult 

and challenging problems that has received considerable 

attention over the last decade. Researchers have been constantly 

investigating better ways to solve it. Recently, one optimization 

technique called firefly algorithm has gained the interest of 

many researchers. This algorithm is a type of swarm 

intelligence algorithm based on the reaction of a firefly to the 

light of other fireflies. In this paper, we propose an 

improvement on the original firefly algorithm. The proposed 

algorithm takes into account not only the firefly’s reaction to 

light but also the following contributing factors: firefly’s gene 

exchange, its pheromone, and the impact the wind has on 

pheromone dispersion. We tested our proposed algorithm 

against the traditional firefly algorithm and the original genetic 

algorithm with six standard benchmark functions and found 

that our algorithm is not only more effective but also faster than 

the other two algorithms.  

I. INTRODUCTION 

Optimization problem is one of the most challenging 

problems in the field of operation research. The goal of the 

optimization problem is to find the set of variables that 

results into the optimal value of the objective function, 

among all those values that satisfy the constraints. Many new 

types of optimization algorithms have been explored. One of 

them is a nature-inspired type. Algorithms of this type are 

such as an ant colony optimization (ACO) algorithm 

proposed by Marco Dorigo in 1992 which has been 

successfully applied to scheduling problems. ACO is 

inspired by the ants’ social behavior of finding their food 

sources and the shortest paths to their colony, marked by 

their released pheromone [1, 2]. Another example of this 

type of algorithms is a particle swarm optimization (PSO) 

algorithm developed by Kennedy and Eberhart in 1995. PSO 

is based on the swarming behavior of schools of fish and 

bird in nature. PSO has been successfully applied to a wind 

energy forecasting problem [1] where wind energy is 

estimated based on two meta-heuristic attributes of swarm 

intelligence. A firefly algorithm is yet another example. It is 

a population-based algorithm inspired by the social behavior 
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of fireflies [3, 4]. Fireflies communicate by flashing their 

light. Dimmer fireflies are attracted to brighter ones and 

move towards them to mate [5]. FA is widely used to solve 

reliability and redundancy problems. A species of firefly 

called Lampyride also used pheromone to attract their mate 

[6]. 

Another well-known nature-inspired algorithm is genetic 

algorithm (GA). GA is inspired by the process of natural 

evolution. It starts with a population of chromosomes and 

effects changes by genetic operators. Three key genetic 

operators are crossover, mutation, and selection operators 

[7]. Our algorithm proposed in this paper combines 

attributes of firefly mating and its pheromone dispersion by 

the wind with the genetic algorithm. GA is used as the core 

of our algorithm while the attributes mentioned are used to 

compose a new selection operator. 

II. BACKGROUND 

A. Firefly Algorithm  

There are three idealized rules incorporated into the 

original Firefly algorithm (FA) [4]: i) all fireflies are unisex 

so that a firefly is attracted to all other fireflies; ii) a firefly’s 

attractiveness is proportional to its brightness seen by other 

fireflies, and so, for any two fireflies, the dimmer firefly is 

attracted by the brighter one and moves towards it, but if 

there are no brighter fireflies nearby, a firefly moves 

randomly; and iii) the brightness of a firefly is proportional 

to the value of its objective function. According to the above 

three rules, the degree of attractiveness of a firefly is 

calculated by the following equation: 

2r
0e            (1) 

where β is the degree of attractiveness of a firefly at a 

distance r, β0 is the degree of attractiveness of the firefly at r 

= 0, r is the distance between any two fireflies, and γ is a 

light absorption coefficient. The distance r between firefly i 

and firefly j located at xi and xj respectively is calculated as a 

Euclidean distance: 
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The movement of the dimmer firefly i towards the 

brighter firefly j in terms of the dimmer one’s updated 

location is determined by the following equation: 
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The third term in (3) is included for the case where there 

is no brighter firefly than the one being considered and rand 

is a random number in the range of [0, 1]. 

B. Genetic Algorithm 

Genetic algorithm (GA) is inspired by the process of 

natural evolution from parents to their offspring. An initial 

population of possible solutions is randomly selected and 

then operated on by GA operators. Three key GA’s operators 

are crossover, mutation, and selection operators. The 

crossover operator exchanges genes between a mating pair 

and creates an offspring. The mutation operator randomly 

changes the genes of an offspring, and the selection operator 

selects a group of offspring to be the next generation of 

population. 

III. PROPOSED ALGORITHM 

The proposed algorithm uses GA as its core. The new 

mating pair selection method is introduced to improve the 

exploration capability of the algorithm. This new selection 

method is inspired by two natural behaviors of fireflies in 

attracting mating partners: flashing their lights and releasing 

the pheromone. The detailed procedure of the proposed 

algorithm is described as follows: 

A. Generation of the Initial Population 

In the first step, an initial population of N chromosomes 

is randomly generated. Then a fitness function is applied to 

evaluate the fitness of all chromosomes in the population. 

B. Mating Pair Selection 

This step selects N/2 mating pairs from the population. In 

a traditional GA, mating pairs are typically selected by using 

a roulette wheel selection method. On the other hand, in our 

proposed model, mating pairs are selected based on two 

natural behaviors of fireflies in attracting mating partners: i) 

the behavior of using the flashing light and ii) the behavior 

of using pheromone and its dispersion by the wind.  

In nature, female fireflies perch on a tree and release 

pheromone while male fireflies, attracted to the females’ 

pheromone in the air, circle around them and flash their 

light. Each female responds to the brightest male she sees by 

flashing her light synchronously with his. Then mating 

begins. The following paragraphs discuss how the above 

behaviors are used to determine the mating pairs. 

According to the behavior of using the flashing light to 

attract mating partners, the degree of attractiveness of 

chromosome i (or firefly i) is calculated by the following 

equation: 

2r
0ii e           (4) 

where βi is the degree of attractiveness of chromosome i, βi0 

is the fitness value of chromosome i, γ is the light absorption 

coefficient, and r is a Euclidean distance between 

chromosome i and chromosome j. 

Besides using the flashing light to attract mating partners, 

some firefly species in nature, such as Lampyridae, use 

pheromone to attract a mate as well. In this proposed 

algorithm, not only the attraction by pheromone but also the 

impacts of the wind, dispersing the pheromone in some 

directions and lowering its concentration in the air, are taken 

into account. The concentration of the pheromone of firefly i 

at any given point is calculated by the following equation: 

r
21strength0ii e)cos(WPhe      (5) 

where βi0 is the fitness value of firefly i that releases the 

pheromone, Wstrength is wind strength in the range of [0, 1], θ1 

is the angle between firefly i and firefly j in the range of [0
o
, 

360
o
], and θ2 is the angle the wind makes with the x axis in 

the range of [0
o
, 360

o
]. 

By combining the above two behaviors, the average 

attractiveness between chromosome i and chromosome j is 

obtained as follows: 
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After the average attractiveness of each pair of 

chromosomes is calculated, the pair with the highest value is 

selected as the first mating pair. Then the pairs with the next 

highest values are selected consecutively until N/2 pairs are 

attained. 

C. Crossover 

Crossover exchanges genes between two parent 

chromosomes and produces two offspring. Each offspring 

inherits some characteristics of each parent. There are many 

types of crossover operators. In this paper, only one-point 

crossover and two-point crossover are being considered. In 

one-point crossover, a crossover point, which is between the 

first and the last genes of the parent chromosomes, is 

randomly selected. Then, all genes beyond that crossover 

point are exchanged to form two new chromosomes.  

In Fig. 1, for example, if the crossover point is 4, the 

crossover of 01010 and 11001 creates two new offspring 

which are 01001 and 01110. 
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 Parents  Offspring 

             
Rand    4       4  

Parent 1 0 1 0 1 0  Child 1 0 1 0 0 1 

             

Parent 2 1 1 0 0 1  Child 2 0 1 1 1 0 

Figure 1.  One-point crossover. 

In two-point crossover, two crossover points are 

randomly selected. As shown in Fig. 2, each parent 

chromosome is divided into three segments. The segment of 

chromosomes of the two parents which are between the two 

crossover points, genes 2, 3 and 4 in this example, are 

exchanged. 

 

 Parents  Offspring 

             
Rand 1    5   1    5 

Parent 1 0 0 1 1 0  Child 1 0 1 0 0 0 

             

Parent 2 1 1 0 0 1  Child 2 1 0 1 1 1 

Figure 2.  Two-point crossover. 

D. Mutation 

In order to avoid getting stuck at a local optimum, 

mutation is applied to each offspring one by one. Mutation 

effects small random changes to the genes in order to create 

diversity. In this research, mutation is done by randomly 

selecting a gene in the chromosome and flipping it over. 

E. Selection of the Next Generation 

During this step, a selection operator selects the top N 

chromosomes from a set of parent and offspring 

chromosomes for progression to the next generation. 

F. Termination 

When one termination criterion or more is satisfied, the 

algorithm stops looping and returns the best chromosome in 

the current population. Otherwise, it goes back to step B. 

IV. RESULTS AND DISCUSSION 

The performance of the proposed model was tested for its 

performance in finding optimal solutions with six standard 

benchmark functions [8]: Sphere, Ackley, Levy, Matyas, 

Booth, and Three-hump camel functions.  These six 

functions are briefly described below: 

A. Sphere Function  


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where i = 1, 2, …, m. m is the number of dimensions of the 

problem space. The search space is restricted to -5.12 ≤ xi ≤ 

5.12. The global minimum of this function is equal to zero, 

attained at x


= (0, 0, ..., 0). 

B. Ackley Function 
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where i = 1, 2, …, m. m is the number of dimensions of the 

problem space. The search space is restricted to -15 ≤ xi ≤ 

30. The global minimum of this function is equal to zero, 

attained at x


= (0, 0, ..., 0). 

C. Levy Function 
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The search space of this function is -10 ≤ xi ≤ 10. The global 

minimum is located at x


 = (1, 1, ... , 1) with a function value 

of 0. 

D. Matyas Function 

  21
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The search space of this function is -10 ≤ xi ≤ 10. The global 

minimum of this function is equal to zero, attained at x


= (0, 

0). 

E. Booth Function 

   221
2

21 5xx27x2x)x(f    (12) 

The search space of this function is -10 ≤ xi ≤ 10. The global 

minimum of this function is equal to zero, attained at x


= (1, 

3). 

F. Three-hump Camel Function 
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The search space of this function is -5 ≤ xi ≤ 5. The global 

minimum of this function is equal to zero, attained at x


= (0, 

0). 
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The performance of our proposed algorithm was 

compared with those of the traditional firefly algorithm and 

genetic algorithm. Table I, II, and III show the values of the 

parameters used in these experiments. For each set of 

parameter values, all three algorithms were run 10 times. 

Each run started with a different initial population and 

stopped when one of the termination criteria was met. The 

performances of these three algorithms were measured in 

terms of their ability to reach the optimal solution. 

Table IV, V, and VI present the performances of our 

proposed algorithm, the firefly algorithm, and the genetic 

algorithm in finding the optimal solutions of the four 

benchmark functions. “Average iteration” is the mean of the 

number of iterations executed to obtain the optimal solution. 

 

TABLE I.  PARAMETERS USED IN THE PROPOSED ALGORITHM 

Parameters Values 

Number of Populations (N) 10, 20, 30, 40 

Light Absorption Coefficient (γ) 2 

Crossover Rate 1 

Mutation Rate 0.2 

Maximum Number of Generations 1,000 

Wind Strength [0, 1] 

Wind angle (θ2) [0o, 360o] 

 

TABLE II.  PARAMETERS USED IN FIREFLY ALGORITHM 

Parameters Values 

Number of Populations (N) 10, 20, 30, 40 

Light Absorption Coefficient (γ) 2 

α 0.5 

Maximum Number of Generations 1,000 

TABLE III.  PARAMETERS USED IN GENETIC ALGORITHM 

Parameters Values 

Number of Populations (N) 10, 20, 30, 40 

Crossover Rate 1 

Mutation Rate 0.2 

Maximum Number of Generations 1,000 

 

“Success rate” is the number of times the algorithm 

successfully located the global optimum out of 100 trials. 

“Average time” is the mean of the length of time spent to 

obtain the optimal solution. 

The experimental results show that the proposed 

algorithm outperforms both the original firefly algorithm and 

the original genetic algorithm in terms of the success rate. 

Moreover, the average numbers of iterations to obtain 

optimal solutions required by the proposed algorithm are 

lower than those of the other two algorithms. 

 

TABLE IV.  EXPERIMENTAL RESULTS OF THE PROPOSED ALGORITHM 

Function N 

 

One-point crossover Two-point crossover 

Average Iteration Success Rate (%) Average Time (Sec.) Average Iteration Success Rate (%) Average Time (Sec.) 

Sphere  10 44.50 100 0.140136 56.60 100 0.206702 

20 44.40 100 0.362126 42.90 100 0.304669 

30 40.50 100 1.003501 34.00 100 0.858094 

40 34.10 100 0.963845 36.00 100 1.359827 

Ackley 10 124.50 20 2.714305 106.71 70 2.688368 

20 90.50 60 0.633476 98.83 60 0.595218 

30 71.00 70 1.257834 88.89 90 1.755377 

40 79.33 90 3.038048 71.88 80 3.402800 
Levy 10 84.30 100 0.478891 63.30 100 0.307523 

20 57.50 100 0.560573 50.80 100 0.354617 

30 43.60 100 0.789364 41.30 100 0.807373 

40 36.20 100 1.355643 36.40 100 1.282797 

Matyas 10 503.00 40 2.274087 516.67 30 2.798571 

20 384.60 50 8.162268 263.50 50 2.673472 

30 484.67 75 7.951059 435.50 60 2.574411 

40 289.60 80 6.361230 214.40 70 7.451153 

Booth 10 87.50 20 24.946641 512.50 20 26.850712 

20 399 10 85.726177 89.50 20 76.832269 

30 432.50 20 98.546332 478.83 60 206.227708 

40 223.63 80 106.712956 355.50 40 185.375549 

Three-hump 

camel 

10 152.38 80 10.347262 167.57 70 14.057109 

20 98.88 80 28.192548 122.40 50 57.851137 

30 99.75 80 59.861841 89.38 80 54.061484 

40 77.22 90 62.272257 70.13 80 96.478422 
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TABLE V.  EXPERIMENTAL RESULTS OF THE TRADITIONAL FIREFLY ALGORITHM 

Function N 

 

Average Iteration Success Rate (%) Average Time (Sec.) 

Sphere  10 632.50 20 0.775529 

20 413.00 10 1.319305 

30 531.50 20 1.083772 

40 829.10 100  0.646800 

Ackley 10 324.20 10 0.345611 

20 435.60 30 0.392470 

30 580.20 40 0.482667 

40 724.70 70 0.895902 

Levy 10 149.00 10 0.902156 

20 172.00 30 0.888335 

30 133.33 30 0.917366 

40 147.28 70 0.506923 

Matyas 10 115.00 10 0.546960 

20 198.00 10 0.577840 

30 143.32 40 0.340200 

40 184.71 60 0.284732 

Booth 10 N/A 0 N/A 

20 N/A 0 N/A 

30 N/A 0 N/A 

40 N/A 0 N/A 

Three-hump camel 10 29.42 70 0.342584 

20 13.50 80 0.374392 

30 19.50 90 0.318742 

40 25.50 100 0.031985 

TABLE VI.  EXPERIMENTAL RESULTS OF THE TRADITIONAL GENETIC ALGORITHM 

Function N 

 

Average Iteration Success Rate (%) Average Time (Sec.) 

Sphere  10 237.60 30 0.489192 

20 462.00 40 2.456908 

30 389.67 60 1.579418 

40 551.00 70 3.363200 

Ackley 10 144.00 10 1.419394 

20 160.54 10 2.249834 

30 187.00 30 2.395860 

40 164.00 40 2.270024 

Levy 10 304.00 10 1.453955 

20 326.00 10 3.186401 

30 359.00 10 3.640327 

40 801.00 10 2.422948 

Matyas 10 153.40 100 0.285534 

20 253.50 100 0.655994 

30 428.14 70 1.705949 

40 699.33 60 3.078126 

Booth 10 N/A 0 N/A 
20 N/A 0 N/A 
30 N/A 0 N/A 
40 N/A 0 N/A 

Three-hump camel 10 N/A 0 N/A 
20 N/A 0 N/A 
30 N/A 0 N/A 
40 N/A 0 N/A 

 

 

V. CONCLUSION 

This paper proposed a new optimization algorithm 

motivated by the nature of firefly mating. In the proposed 

algorithm, GA is used as the core of the algorithm. The 

natural behaviors of fireflies in attracting mating partners are 

used in designing a new selection operator. The performance 

of our proposed algorithm was tested against those of the 

traditional firefly algorithm and the original genetic 

algorithm with six standard benchmark functions: Sphere, 

Ackley, Levy, Matyas, Booth, and Three-hump camel 

functions. Salient test results are as follows: i) the success 

rates of our proposed algorithm were higher than those of the 

other two algorithms, especially on tests with the Sphere and 

Levy functions where the success rates were 100%; ii) the 

average numbers of iterations to obtain optimal solutions 

required by our proposed algorithm were lower than those of 

163



  

the other two algorithms on all six benchmark functions; that 

is, our algorithm converged to the optimal solutions faster. 
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