
  

  

Abstract—This paper presents a novel data-based controller 
design method for nonlinear systems based on the VRFT design 
framework. The control system is designed by considering the 
block-oriented representations of the nonlinear system, including 
the Hammerstein, Wiener, and Hammerstein-Wiener structures. 
In the proposed method, identification of a complete dynamic 
model of the nonlinear system is not required, whereas only the 
static nonlinearity, or its inverse, has to be estimated. 
Furthermore, the nonlinearity estimation and the controller 
design are performed simultaneously without the needs of 
iterative procedures or nonlinear optimization. Simulation 
studies confirm the effectiveness of the proposed controller 
design method for nonlinear systems. 

I. INTRODUCTION 

Most dynamical systems can be better represented by 
nonlinear models, which are able to describe the global 
behavior of the system over wide ranges of operating 
conditions. One of the most frequently studied classes of 
nonlinear models is the so-called block-oriented nonlinear 
model [1], which involves a cascade combination of a linear 
dynamic block and a nonlinear static (memoryless) one. Such 
model is related very closely to linear one and can be easily 
adapted to linear control techniques. Two typical 
block-oriented model structures are Hammerstein and Wiener 
models. In the Hammerstein structure, the linear dynamic 
element, G.(z), is preceded by the static nonlinearity, f (····). The 
order of connection is reversed in the Wiener structure. A 
more general model structure is the Hammerstein-Wiener 
structure in which the linear dynamic element is placed 
between two nonlinear static functions, f1(····) and f2.(····). Fig. 1 
shows the structures of these block-oriented models, in which 
u and y are process input and output, respectively, whereas v 
and w are inaccessible intermediate variables. These model 
structures have been successfully used to describe nonlinear 
systems in a number of practical applications. 

In the last decades, a considerable amount of research has 
been carried out on modeling, identification, and control of the 
nonlinear systems using the block-oriented representations. 
Traditional control design approaches are often based on 
mathematical models that approximate the behavior of the 
physical process. There are two steps in the model-based 
controller design: an empirical model of the process is 
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identified first, which is subsequently used together with 
certain algorithms to design the controller. The identification 
process, however, usually relies on some prior assumptions 
such as model structure and order, which are often unavailable 
or subject to uncertainties. Hence, the complexity and 
modeling errors associated with such models increase the 
difficulty of the control design task, and may lead to 
degradation of control performance. In addition, because 
model identification and controller design are treated as two 
separated pieces of works, the identified model, depending on 
the identification technique used, may not contain adequate 
control-relevant information for controller design. 

Data-based control design methods are very useful in many 
practical control applications, where obtaining a suitable 
model is a very difficult task. The virtual reference feedback 
tuning (VRFT) method [2] allows to directly design 
controllers using a set of process input-output data, without 
resorting to any process model. Most existing results on the 
VRFT design are however restricted to linear systems. Campi 
and Savaresi [3] explored the extension of VRFT to nonlinear 
systems, which however requires iterative procedure. 
Adaptive version of the VRFT design [4] was proposed for 
adaptive PID controller parameter tuning. Unlike the linear 
VRFT, the extended versions of VRFT to nonlinear systems 
are not one-shot methods so that a significant advantage of 
VRFT method is lost. This study aims to design controllers for 
nonlinear Hammerstein, Wiener, and Hammerstein-Wiener 
systems based on the one-shot (noniterative) VRFT design 
framework. A simple linearizing control scheme for these 
block-oriented systems using the inverse of nonlinearity and a 
PID controller is adopted. The control scheme results in an 
equivalent linear control system that enables the application of 
VRFT design method. The proposed method has two 
distinctive features: (1) identification of a complete 
block-oriented model of the nonlinear system is not required, 
whereas only the static nonlinearity, or its inverse, has to be 
estimated; (2) the nonlinearity estimation and the PID 
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Figure 1.  Schematic diagram of block-oriented nonlinear models: 
(a) Hammerstein, (b) Wiener , and (c) Hammerstein-Wiener models 
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controller design are performed simultaneously without the 
needs of iterative procedures or nonlinear optimization. 

II. CONTROLLER DESIGN FOR HAMMERSTEIN SYSTEMS 

The control scheme for Hammerstein system is as shown in 
Fig. 2(a) where f –1(····) and GC(z) denote the (estimated) inverse 
of nonlinearity and the controller, respectively. This 
linearizing control scheme results in an equivalent linear 
control system shown in Fig. 2(b). 

It is assumed that the nonlinear static function can be 
represented by the B-spline series expansion as 

 ( ) ( ),
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r

k k i u i k
i

v f u a B u
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where Bu,i (•) are the (known) B-splines with a knot sequence 
defined on the operating range of u, and ai are unknown 
coefficients. The nonlinear function can also be represented 
using other basis functions, but the B-splines are used in this 
study because the B-spline series is a local basis which has 
more flexibility in signal (function) representation [5], 
compared with using a global basis such as polynomials and 
Laguerre functions. Because the steady-state gain of a 
block-oriented nonlinear system can be arbitrarily distributed 
in nonlinear and linear blocks, it is assumed, without loss of 
generality, that a1 = 1. In addition, assume that the variables are 
defined as deviation variables based on a steady-state 
operating point, so that f (0) = 0. Therefore, when the 
third-order B-splines with 0 as one of its knots are used, the 
following relation holds, for some (known) s: 
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Consequently, the inaccessible intermediate variable vk can be 
expressed as 
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The controller GC is a PID controller with discrete transfer 
function given by 
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where KP, KI, and KD are the PID parameters. The problem of 
controller design is to determine the PID parameters and the 
unknown coefficients ai (i = 2,…,r), from an N-point data set 
{uk, yk}k=1~N of observed input-output measurements. 

This study applies the VRFT method to the equivalent 
linear control system shown in Fig. 2(b), so that a 
model-reference problem, as depicted in Fig. 3, is to be solved. 
In Fig. 3, the reference model T(z) describes the desired 
behavior of the closed-loop system, which is typically 
specified by the following first-order dynamics: 
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where A is a tuning parameter related to the speed of response. 
The design goal is to determine the PID parameters and the 
unknown coefficients ai, such that the control system in Fig. 
2(a) behaves as similarly as possible to the prespecified 
reference model T(z). Based on the virtual reference signal 

1( ) ( ) ( )r z T z y z−=ɶ , the virtual output of controller GC can be 
calculated as 
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When the linear block is fed by vk, it generates yk. Therefore, a 
PID controller that shapes the closed-loop behavior to the 
reference model generates vk when the error signal is given by  

k kr y−ɶ . The task of controller design then becomes 

minimizing the difference between vk given in (4) and 
kvɶ  

calculated from (7), or equivalently, minimizing the difference 
between Bu,1(uk) and xk, where 
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Equation (8) can be written as 
k kx =ψ θ , where 
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Now, the parameter θ  is computed by solving the following 
minimization problem: 
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Figure 2.  (a) Linearizing control scheme and (b) equivalent linear control 
system for nonlinear process with Hammerstein structure. 

rɶ

 
Figure 3.  Reference model for controller design of Hammerstein system. 
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where 
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The solution can be calculated using the least-squares 
technique given by 
 ( ) 1ˆ T T−

=θ Ψ Ψ Ψ φ  (12) 

The PID parameters and estimates of the coefficients ai (i = 

2,…,s–1,s+1,…,r), can be obtained by partitioning the 
estimate θ̂ , according to the definition of θ  in (9). The 
coefficient as is then computed from (3). With the estimated 
nonlinear function, its inverse f –1 can be readily obtained. 

III. CONTROLLER DESIGN FOR WIENER SYSTEMS 

The control scheme for Wiener system is as shown in Fig. 
4(a), which results in an equivalent linear control system 
shown in Fig. 4(b). It is assumed that the inverse function of 
the static nonlinearity can be represented by the B-spline series 
expansion as 
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where By,i (•) are the (known) B-splines with a knot sequence 
defined on the operating range of y. To meet the condition of 
f –1(0) = 0, it is required, for some (known) s, that 
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Consequently, the inaccessible intermediate variable vk can be 
expressed as 
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The problem of controller design is to determine the PID 
parameters and the unknown coefficients ai (i = 1,…,r) from an 
N-point input-output data set {uk, yk}k=1~N. 

The VRFT method is applied to the equivalent linear 
control system shown in Fig. 4(b), so that a model-reference 
problem, as depicted in Fig. 5, is to be solved. The design goal 
is to determine the PID parameters and the unknown 
coefficients ai, such that the control system in Fig. 4(a) 
behaves as similarly as possible to the prespecified reference 
model T(z). Based on the virtual reference signal 

1( ) ( ) ( )vr z T z v z−=ɶ , the virtual output of controller GC is 

calculated as 
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When the linear block is fed by uk, it generates vk. Therefore, a 
PID controller that shapes the closed-loop behavior to the 
reference model generates uk when the error signal is given by  

,v k kr v−ɶ . The task of controller design then becomes 

minimizing the difference between the measured uk and the 
kuɶ  

calculated from (16). Substituting (15) into (16) yields 

k ku =ψ θɶ , where 
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The parameter θ  is computed by solving the following 
minimization problem: 
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The solution can be calculated using the least-squares 
technique given by 
 ( ) 1ˆ T T−

=θ Ψ Ψ Ψ φ  (20) 

The problem is how to obtain the PID parameters and 
estimates of the unknown coefficients ai (i = 1,…,s–1,s+1,…,r) 
from the estimate θ̂  in (20). Define 

1 1 1

1 1 1

1 1 1

P D s D s D r

T
I D s D s D r

D D s D s D r

K a K a K a K a

K a K a K a K a

K a K a K a K a

− +

− +

− +

 
 = = ⋅ 
  

Θ K a

⋯ ⋯

⋯ ⋯

⋯ ⋯

 (21) 

(a) 

 
(b) 

 
Figure 4.  (a) Linearizing control scheme and (b) equivalent linear control 
system for nonlinear process with Wiener structure. 
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Figure 5.  Reference model for controller design of Wiener system. 
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where 
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An estimate Θ̂  of the matrix Θ  can then be obtained from the 
estimate θ̂ . Let the economy-size SVD of Θ̂  be given by 
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Then, the closest, in the 2-norm sense, estimates of the 
parameter vectors K and a can be computed as [6] 
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The coefficient as is then computed from (14). Note that this 
SVD-based algorithm intrinsically delivers estimates that 
satisfy the uniqueness condition || K̂ ||2 = 1. 

IV. CONTROLLER DESIGN FOR HAMMERSTEIN-WIENER 

SYSTEMS 

The control scheme for the Hammerstein-Wiener system is 
as shown in Fig. 6(a), which results in an equivalent linear 
control system shown in Fig. 6(b). The aforementioned 
algorithms for Hammerstein and Wiener systems can be 
combined to design the controller for a Hammerstein-Wiener 
system. It is assumed that the input nonlinear static function 
and the inverse of the output nonlinear static function can be 
represented by the B-spline series expansion as 
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It is assumed, without loss of generality, that a1,1 = 1. To assure 
f1 (0) = 0 and f2

 –1(0) = 0, it is required respectively, for some 
(known) s1 and s2, that 
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The problem of controller design is to determine the PID 
parameters and the unknown coefficients a1,i (i = 2,…,r1) and 
a2,i (i = 1,…,r2) from an N-point input-output data set {uk, 
yk}k=1~N. 

The VRFT method is applied to the equivalent linear 
control system shown in Fig. 6(b), so that a model-reference 
problem, as depicted in Fig. 7, is to be solved. The design goal 
is to determine the PID parameters and the unknown 
coefficients, a1,i and a2,i, such that the control system in Fig. 
6(a) behaves as similarly as possible to the prespecified 
reference model T(z). Based on the virtual reference signal 

1( ) ( ) ( )wr z T z w z−=ɶ , the virtual output of controller GC is 

calculated as 
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The task of controller design then becomes minimizing the 
difference between the vk given in (25) and the 

kvɶ  calculated 

from (29), or equivalently, minimizing the difference between 
Bu,1(uk) and xk, where 

( ) ( ) ( )

( )

1

1 1 1

1

1

1

1, , 1, 1 , , 1
2

1, ,
2

s

k k i u i k s u s k u s k
i

r

i u i k
i s

x v a B u a B u B u

a B u

α
−

+ +
=

= +

 = − − + 

−

∑

∑

ɶ

 (30) 

Substituting (26) into (29), xk given in (30) can be written as 

k kx =ψ θ , where 
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and ,Pi kψ , ,Ii kψ , and ,Di kψ  are those given in (17). The 

parameter θ  is computed by solving the following 
minimization problem: 
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Figure 6. (a) Linearizing control scheme and (b) equivalent linear control 
system for nonlinear process with Hammerstein-Wiener structure. 
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Figure 7. Reference model for controller design of Hammerstein-Wiener 
system. 
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The solution can be calculated using the least-squares 
technique given by 
 ( ) 1ˆ T T−

=θ Ψ Ψ Ψ φ  (34) 

The estimates of the coefficients a1,i (i = 2,…,s1–1,s1+1,…,r1), 
can be directly obtained from the estimate θ̂ , according to the 
definition of θ  in (31). The PID parameters and estimates of 
the coefficients a2,i (i = 1,…,s2–1,s2+1,…,r2), can be obtained 
by the aforementioned SVD-based algorithm. The coefficient 
a1,s1 and a2,s2 are then computed from (27). 

V. SIMULATION EXAMPLES 

A. Example 1: Hammerstein System 

Consider the following Hammerstein system: 

  ( )
1 2
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0.008 0.0071
( ) 1.5 1 ; ( )
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u z z

f u e u G z
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− −
−
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 (35) 

To design the control system by the proposed method, a set of 
400 data points have been obtained (sampling time = 0.3) by 
feeding the system with uniformly random steps distributed in 
the range of [–2 3], as shown in Fig. 8. By specifying the 
tuning parameter of A = 0.942, the resulting PID parameters 
are KP = –0.222, KI = –0.012, and KD = –0.601, and the 
estimated nonlinear function is plotted in Fig. 9. The estimated 
nonlinear function is scaled (by a factor of –5.01) to compare 
with the actual nonlinearity, as shown in Fig. 9. The result 
shows that the system nonlinearity was accurately estimated. 
For the purpose of comparison, the conventional PID 
controller was also designed based on the (linear) VRFT 
method using the same process data and tuning parameter, 
which resulted in KP = 0.737, KI = 0.036, and KD = 1.838. Fig. 
10 shows the closed-loop responses of the proposed nonlinear 
control system and the conventional PID control system to 
successive set-point changes. The control system designed by 
the proposed method reproduces the desired reference model 
with high accuracy for the set-point changes, whereas the 
conventional PID control system considerably deviates from 
the reference model for each set-point change. 

B. Example 2: pH Neutralization Process 

The pH neutralization process is important in various 
chemical processes such as wastewater treatment processes, 
biochemical processes, and polymerization processes. The 
proposed controller design methods for Wiener and 
Hammerstein-Wiener systems were applied to a pH process 
[7], which involves the neutralization of acetic acid (AcH), 
propionic acid (PrH), and sodium hydroxide (NaOH) in a 
single tank. Without buffering, the process exhibits a high 
degree of nonlinearity, causing the difficulty in control. The 
governing equations are 
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 (36) 

where qa and qb are the flow rates of acidic and alkaline 
streams, V is the tank volume, and C denotes the concentration. 
The nominal operating conditions are qa = 0.0142 L/s, V = 1.0 
L, C0AcH = 1 M, C0PrH = 1 M, C0NaOH = 2 M, pKAcH = 4.75, pKPrH 

= 4.87. The objective is to control the pH of the effluent 
solution by manipulating the base flow rate qb. 

At the steady-state of qb = 0.0142 L/s and pH = 9.407, a 
uniform random signal, with a maximum amplitude of 50%±  
of the nominal value, was introduced to the base flow qb and 
the resulting pH was measured with a sampling time of 0.1 s, as 
shown in Fig. 11. A set of 1000 data points were used for the 
proposed controller design, with a tuning parameter A = 0.905. 
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Figure 8.  Process input-output data for example 1. 
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Figure 9.  Process nonlinearity for example 1. 
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Figure 10.  Closed-loop response for example 1. 
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Figure 11.  Process input-output data for the pH neutralization process. 

By modeling the pH process as a Wiener system, the 
resulting PID parameters are KP = –0.999, KI = –0.003, and KD 

= 0.0474, and the estimated inverse of the nonlinearity is 
plotted in Fig. 12. By modeling the pH process as a 
Hammerstein-Wiener system, the resulting PID parameters are 
KP = –0.999, KI = –0.0028, and KD = 0.0445, and the estimated 
input nonlinearity, f1, and inverse of the output nonlinearity, 
f2

 –1, are plotted in Fig. 13. For the purpose of comparison, the 
conventional PID controller was also designed based on the 
(linear) VRFT method using the same process data and tuning 
parameter, which resulted in KP = 6.4*10–4, KI = 1.95*10–5, and 
KD = –3.0*10–4. Fig. 14 compares the closed-loop performance 
of the proposed nonlinear control systems and the 
conventional PID control system to successive set-point 
changes. Both of the nonlinear control systems exhibit better 
and more consistent responses than the PID control system for 
these set-point changes because they effectively compensate 
the process nonlinearity. However, the conventional PID 
controller shows different dynamic behaviors for the different 
set-point values due to the nonlinearity. The nonlinear control 
system designed based on the Hammerstein-Wiener modeling 
shows the best control performance because more degree of 
freedom is used for modeling and control of the process. 

VI. CONCLUSION 

In this paper, VRFT-based methods for controller design of 
nonlinear systems modeled by the Hammerstein, Wiener, and  
Hammerstein-Wiener structures have been presented. The PID 
controller parameters and process nonlinearities are 
simultaneously obtained based directly on a set of plant data. 
This is in sharp contrast to the model-based design methods 
that require identifying an approximate process model, which 
is often difficult and subject to modeling errors, before 
controller design. In the proposed algorithms, combining the 
B-splines representation of the nonlinearity with the VRFT 
framework allows putting the system in linear regressor form, 
so that least-squares techniques can be used to design the 
controller, which avoids implementation problems due to 
computational limitations. The superiority of the proposed 
nonlinear control design over linear control has been 
illustrated using a Hammerstein system and a pH 
neutralization process. 
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Figure 12.  Process nonlinearity using Wiener modeling. 
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Figure 13.  Process nonlinearities using Hammerstein-Wiener modeling. 
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Figure 14.  Closed-loop response for the pH neutralization process. 
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