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Abstract— In this paper a new PID controller design method 

in a modified Smith predictor configuration is proposed for 

integrating processes with dead time. A two-degree-of freedom 

control scheme has been considered where first a controller is 

designed to achieve the desired set-point response and then the 

load-disturbance rejecting controller is computed. Both the 

controllers are designed using the direct synthesis approach in 

frequency domain. The obtained Smith predictor controllers 

are converted into PID form by frequency response matching 

of the respective controllers at two low frequency points. The 

efficacy of the method is demonstrated through simulation of 

examples taken from the literature and the performance is 

compared with some of the prevailed methods.   

I. INTRODUCTION 

The Proportional-Integral-Derivative (PID) controllers 

with its variants are widely accepted in the process industry 

due to its simplicity, easy applicability and capability of 

controlling processes having different dynamics [1]. The 

Smith predictor control scheme [2] is specially designed to 

work for processes with dead-time where the controller is 

designed with consideration of the delay-free part of the 

process. For integrating processes with dead-time the set-

point performance of the Smith predictor is good but load-

disturbance rejection is poor [3,4].  Astrom et al. [5] 

proposed a modified Smith predictor scheme with two-

degree of freedom to consider both the set-point and load-

disturbance performances separately. Numerous modified 

Smith predictor schemes for integrating processes with dead-

time have been proposed in the literature to achieve better 

closed-loop performance [6], [7], [8], [9], [10]. 

Rao et al. [9] proposed modified Smith predictor for low 

order integrating processes with dead-time where set-point 

controller is designed using the direct synthesis approach 

and load-disturbance controller is designed using optimal 

gain and phase margin approach and set-point weighting is 

also considered for improving the set-point response. Uma et 

al. [10] extended this work where set-point controller is PID 

with lag filter and disturbance rejection controller is 

designed as PD with lead-lag structure and the two 

controllers are designed using direct synthesis approach. For 

improvement of the set-point response set-point weighting is 

used and for improvement of the load-disturbance response 

an additional first order filter is used in the feedback path.   
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In this paper a PID control scheme in a two-degree-of-

freedom Smith predictor configuration has been proposed 

for integrating processes with dead time. Considering the 

desired set-point and load-disturbance models the set-point 

controller and the load-disturbance controller, respectively, 

are obtained through the direct synthesis approach. These 

controllers are further approximated to PID form using 

frequency response matching at two low frequency points. A 

simple and useful criterion has been provided for selection 

of these low frequency points. The method involves solution 

of linear algebraic equations.  The effectiveness of the 

proposed method is demonstrated through simulation of 

various examples taken from the literature.  

The rest of the paper is organized as follows. The design 

method is discussed in detail in Section 2 and demonstrated 

through simulation of various examples in Section 3. 

Conclusion is given in Section 4. 

II. THE DESIGN METHOD 

The modified Smith predictor proposed by Astrom 

[5] as shown in Figure 1 is considered where, ( )
P

G s  is the 

process, ( )
m

G s  is delay-free part of the process model, L  is 

the time delay, ( )
c

G s  is the set-point controller, ( )
d

G s  is 

the load-disturbance controller, r  is the input, d  is the 

disturbance and y  is the output.  

 
Figure 1: Modified Smith predictor. 

For perfect modeling of the process, i.e., 

( ) ( )
Ls

P m
G s G s e


 , the transfer function of set-point 

response from r  to y  may be written as 

,

( ) ( )
( )

1 ( ) ( )

Ls

c m

r y

c m

G s G s e
G s

G s G s






             (1) 

and transfer function for load-disturbance response from d  

to y  may be written as 
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From the Equations (1) and (2), it can be seen that the set-

point response depends only on the controller ( )
c

G s  

whereas the load-disturbance response depends on both the 

controllers ( )
c

G s  and ( )
d

G s . Hence, the controller ( )
c

G s

may be designed first independent of ( )
d

G s and then the 

controller ( )
d

G s  will be designed to achieve improved load-

disturbance response. The design method is based on direct-

synthesis approach for set-point as well as load disturbance 

responses for which the desired closed-loop transfer 

functions for set-point response and load disturbance 

response are selected as 
,

( )
r y

M s  and 
,

( )
d y

M s , respectively. 

The desired reference model transfer functions for set-point 

as well as load-disturbance responses are required to include 

non-minimum phase zero of plant and dead-time, if any. 

Further, for the choice of the desired closed-loop transfer 

function 
,

( )
d y

M s , it is required to have one zero at origin 

for rejection of load-disturbance. 

For the design of the controllers, respective transfer 

functions will be equated as given by 

, ,
( ) ( )

r y r y
G s M s  (3) 

and  

, ,
( ) ( )

d y d y
G s M s  (4) 

which gives the controllers as 

,

,

( )
( )

( ) ( ) ( )

r y

c Ls

m r y m

M s
G s

G s e M s G s





 (5) 

and 

,

(1 ( ) ( ) ( ) ( ) )1
( ) 1

[(1 ( ) ( ))] ( )( )

Ls

c m c m

d Ls

c m d ym

G s G s G s G s e
G s
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 (6) 

From Equations (5) and (6) it is observed that the two 

controllers may not be practically implementable. Hence, 

PID controllers ( )
PID

c
G s  and ( )

PID

d
G s  are to be computed 

from the controllers  ( )
c

G s  and ( )
d

G s , respectively, with 

the following form  

I

P D

K
K K s

s
   (7) 

where, 
P

K ,
I

K  and 
D

K
 

are proportional, integral and 

derivative gains, respectively. First, the set-point controller 

( )
PID

c
G s  is determined and then, the load-disturbance 

controller ( )
PID

d
G s  is evaluated. To get the ( )

PID

c
G s  from 

( )
c

G s , the frequency responses of the two controllers are 

matched and may be written as 

( ) ( )
C s j

s jC

PID
G s G s







  (8) 

where, the left-hand side (LHS) expression is equivalent 

with the right-hand side (RHS) expression in terms of 

frequency response. We may write 

( ) ( ) ( ) ( )
PID PID

cr ci cr ci
G jG G jG       (9) 

where, 

( )

( )

( ) (

and

)

  ( ) ( )

s j

C s j

C

PID PID PID

cr ci

cr ci

G s

G s

G jG
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Separating the real and the imaginary parts in Equation (9), 

one may write 

 and  ( ) ( ) ( ) ( )
PID PID

cr cr ci ci
G G G G      (10) 

 In order to have the equivalence of two real functions, 

 and  ( ) ( )
cr ci

G G  with their approximants ( )
PID

cr
G  and 

( )
PID

ci
G  , respectively one may equate appropriate number 

of initial few terms of the corresponding Taylor series 

expansions about 0  . Thus, to accomplish approximate 

matching of the LHS functions in Equation (9) with the 

corresponding functions on the RHS, initial N derivatives of 

the corresponding functions are equated at 0  to give 

 
0 0
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k k

k
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 (12) 

where   [0, 1]k N   

The above derivative relations can be simplified to the 

following algebraic relations using the divided difference 

calculus as shown in [11] 

( ) ( ) ;      [0, 1]
kk

PID

cr cr
G NG k

  
 


    (13) 

and, ( ) ( ) ;      [0, 1]
kk

PID

ci ci
G NG k

  
 


    (14) 

where  
k

 are small positive values around 0  .  

 It is clear from Equations (13)  and (14) that N values of

  give 2 N linear algebraic equations with the unknown 

parameters. For 3 unknowns of the PID controller N is at 

least equal to 2 and for two low frequency points 
0 1

 and    

the following expression is obtained.   

x bA  (15) 

where,  

0

0

1

1

1 0 0

1
0

1 0 0

1
0







 

 

 
 

  

 

 
 

 

A ;     ;  and 
T

P I D
x K K K  

 0 0 1 1
) ( ) ( ) (( )

T

cr ci cr ci
b G G G G     

Directly from Equation (15), we get two values of 
P

K  as: 

0 11 2
( ;  ( ) )

P cr P cr
K G K G    

It is observed from various examples, that 
1 2P P

K K  (as 

0
  and 

1
  are very close to each other) and we may take 
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the value of
P

K as any one of
1 2
 or  

P P
K K or an average of 

these. 

To evaluate 
I

K  and 
D

K , Equation (15) may be simplified 

as 

1 1 1
x bA  (16) 

where,  

0

0

1

1

1

1

1







 

 

 
 
 

 

A ;    1
;  and 

T

I D
x K K

 01 1
( ) ( )

T

ci ci
b G G   

Then, solution of Equation (16) determines 
I

K  and 
D

K . 

Thus, the parameters of the set-point controller ( )
PID

c
G s  are 

evaluated.  

 Similarly, the PID controller ( )
PID

d
G s for the desired load-

disturbance response is obtained from ( )
d

G s by frequency 

response matching of the two controllers as  

( ) ( )
d s j

s jd

PID
G s G s

 


  (17) 

Following the procedure through the Equations (8) to (16) 

the parameters of the ( )
d

PID
G s is determined. Thus, the two 

PID controllers for the set-point as well as the load-

disturbance responses are evaluated. 

Generally, the industrial processes show dominantly low-

pass dynamics in the frequency responses. For such cases, 

the low frequency region is more important for steady state 

response. With this consideration both the frequency points 

are selected very small values. The small values of 

frequency points are chosen at around 1% of the bandwidth 

frequency of the desired reference model, where bandwidth 

may be treated as an indication to the effective range of 

frequency response. Such frequency points for matching 

have been observed through simulation to give good result 

for most of the processes. 

For the purpose of frequency response matching Taylor 

series expansion around 0  and then divided difference 

calculus have been proposed. With this, computation has 

been simplified and reduced significantly. In this way, non-

consideration of higher derivative terms in Taylor series 

expansion might be compensated by reduced computational 

error due to less amount of computation of the simpler 

algebraic equations.  

Moreover, both the frequency points for matching being 

very small, the low frequency region ( 0  ) is 

emphasized which ensures the desired steady-state response.  

With these considerations, the design procedure maintains 

the stability for the stable reference model and results in 

acceptable responses even for the perturbed process as 

shown in the simulation. 

III. SIMULATION RESULTS 

Two examples of integrating processes taken from the 

literature are considered for simulation study. The processes, 

the reference models and the proposed controllers are shown 

in Table 1. The performance comparisons of the proposed 

controllers along with some of the prevailed methods [9], 

[10], [12] are shown in Table 2. 

For Example 1 the unit step input is applied at time 0 for 

set-point response and a negative step input of magnitude 

0.1 for load-disturbance response is applied at 100 sec. The 

process outputs and the controller outputs are shown in 

Figures 2 and 3, respectively. For robustness study +10% 

change in the dead-time is considered and the process 

outputs are shown in Figure 4.  

In Example 2 the unit step input is applied at 0 sec for set-

point response and for load-disturbance response a negative 

step input of magnitude 0.5 is applied at 20 sec. The process 

outputs and the controller outputs are shown in Figures 5 

and 6, respectively.  To show the robustness 10% changes 

in the process gain, the dead-time, the time-constant of the 

zero and a 10% change in the time-constant of the pole are 

considered simultaneously and the corresponding responses 

are shown in Figure 7.  

 It is to note in Table 1 that the process in the second 

example contains a non-minimum phase zero (that gives 

inverse response dynamics) which is considered in the 

corresponding reference models. 

 The proposed method gives P-controller as the set-point 

controller and PD controller as the load-disturbance 

controller for Example 1 and whereas for Example 2 both 

the controllers are obtained as PD-controller. Rao et al. [9] 

and Liu et al. [12] considered three controllers for 

Example 1 whereas for Example 2 Uma et al. [10] used four 

controllers. 

It is observed from tables and figures that the proposed 

method gives favourably comparable performances in set-

point as well as load-disturbance responses both for the 

nominal and the perturbed processes. 

IV. CONCLUSION 

A PID controller design method in a modified Smith 

predictor configuration has been proposed for integrating 

processes with dead time. A two-degree-of freedom control 

has been considered through direct synthesis approach from 

where PID controllers have been computed by approximate 

frequency response matching at two low frequency points. A 

simple and useful criterion has been provided for selection 

of these low frequency points. The design is involved with 

solution of linear algebraic equations. The method is 

applicable to high-order integrating processes in addition to 

low-order one without reduction of the process model. There 

is no requirement of approximation of the dead-time term 
Ls

e
  by the Pade approximation or by the power series 

expansion. The design method is also applicable to 

integrating processes with non-minimum phase zeros as 

shown here.  Efficacy of the method against mathematical 

simplicity along with low computational burden has been 

shown through some examples taken from the literature and 

comparing favourably with some of the prevailing methods. 

134



  

Table 1: Processes, reference models and controllers. 

 

Process 
Nature of the 

Process 
Mr,y(s) Md,y(s) 

Gc(s) Gd(s) 

KP KI KD KP KI KD 

5

1
( ) /

s
G s e s


  

Integrating plus 

dead-time (IPDT) 
process 

5
/ ( 1)

s
e s


  
5

2

50

(4 1)

s
se

s




 1 0 0 0.12 0 0.19 

2

0.1

( )

0.547( 0.418 1)

(1.06 1)

s

G s

s e

s s





 



 

Integrating first order 

plus dead-time 

(IFOPDT) process 

with inverse response  

0 .1
( 0 .418 1)

(0 .5 1)

s
s e

s


 


 

0.1

2

( 0 .418 1)

( 1)

s
s s e

s


 


 2.01 0 2.11 1.02 0 0.18 

 

 
 

Table 2: Performance comparison. 

Process Method 
set-point load-disturbance 

IAE 
MP ts(s) ypeak ts(s) 

1
( )G s  

Proposed 0 8.90 0.53 34.3 11.0 

Rao et al. 

[9] 
0 19.9 0.53 62.2 14.06 

Liu et al. 

[12] 
0 12.8 0.54 55.1 12.37 

1
( )G s  

perturbed 

Proposed 7.6 27.0 0.54 46.5 12.85 

Rao et al. 2.5 30.8 0.54 62.7 15.42 

Liu et al. 7.4 30.7 0.54 55.1 13.84 

2
( )G s  

Proposed 0 5.27 0.18 9.8 2.75 

Uma et al. 

[10] 
0.5 4.93 0.17 10.9 3.14 

2
( )G s

 
perturbed 

Proposed 0 5.3 0.20 9.0 2.65 

Uma et al. 0.5 5.5 0.19 7.7 3.14 

 

 
Figure 2: Process output for Example 1. 

 
Figure 3: Controller output for Example 1. 

 
Figure 4: Process output for perturbed process for Example 1. 
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Figure 5: Process output for Example 2. 

 
Figure 6: Controller output for Example 2. 

 
Figure 7: Process output for perturbed process for Example 2. 
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