
  

  

Abstract— The inherent time-varying nonlinearity and 
complexity usually exist in chemical processes. The design of the 
control structure should be properly adjusted based on the 
current state. However, the design is based on the model of the 
process, so it is directly affected by the quality of the model. 
Because the Gaussian process (GP) model provides predictive 
distribution of the output and an estimate of the variance of the 
predicted output, PID tuning control based on the GP model is 
proposed in this study. The variance information is used for 
control to yield safety-performance trade-off. In addition, it 
provides a mean for the selection of data to improve the model at 
the successive control stage. This allows the controlled process to 
converge from the performance and safety trade-off to an 
optimal performance when the model is accurate because of the 
reduced model uncertainty. A case study on pH neutralization 
has been carried out to illustrate the applicability of the proposed 
method in PID tuning.  
 

I. INTRODUCTION 

Despite the advent of many complicated control theories 
and techniques, more than 95% of the control loops based on 
proportional-Integral-Derivative (PID) controllers are still 
being used in the majority of industrial processes because of 
the ease of its use and relative higher cost of more advanced 
control systems.  Nevertheless, the PID algorithm may have 
difficulty dealing with highly nonlinear and time varying 
chemical processes. In the past, several schemes of self-tuning 
PID controllers were proposed. Recent work includes 
fuzzy-self tuning PID control of the operation temperatures in 
a two-staged membrane separation process [1] and self-tuning 
PID control of the jacketed batch polystyrene reactor using the 
genetic algorithm [2]. The integrity of the model is, therefore, 
very important and information on the model based prediction 
can be invaluable. The construction of nonlinear models is 
difficult and there is a lack of necessary trust in the model [3]. 
Chen and Huang (2004) has applied the linearized neural 
network based model to the tuning of the PID controllers [4] 
whereas an approach based on a lazy learning identification 
has been proposed [5].  The Gaussian process (GP) model 
provides a natural way to evaluate the variance prediction in 
addition to the predictive value which gives the information on 
the reliability of the prediction. GP models have been 
increasingly applied to different nonlinear dynamic systems. 
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Azman and Kocijan (2007) applied GP to the modeling of the 
bio-system and nonlinear systems [6] whereas Lundgren and 
Sjoberg (2003) used the GP model for linear and nonlinear 
model validation [7]. Ni et al. (2012) proposed a recursive GP 
to adapt to the process drifted in both sample-wise and 
block-wise manners with a filter to preprocess the output target, 
improving the accuracy of the prediction [8]. GPs have several 
key properties, including fewer optimizing parameters and the 
capabilities to provide predictive variance and indicate the 
reliability of the output in the local stochastic. The objective of 
this work is to use Gaussian model to provide variance 
information for the control method. This way, a trade-off 
between safety and control performance can be achieved. 
Moreover, the variance information also facilitates the 
selection of data which is carried out to improve the models at 
the successive stage and in return results in the control scheme 
converging from the performance and safety trade-off to a true 
optimal performance as the model uncertainty is reduced. In 
comparison with the conventional PID tuning, this work 
provides a direct evaluation of the predictive variance using 
GP. This added information consequently facilitates the 
identification of the region for improvement.  

II. PROBLEM STATEMENT 
Fig. 1 shows the PID control scheme considered in this study. 
The process output is ty , and tu  is the controller input.  
 

PID Controller Process
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Fig. 1. The GP model based PID control scheme 

 
The discrete and velocity form of a PID controller can be 
expressed as  
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ck , iτ , dτ  are the proportional gain, integral time constant 

and the derivative time constant, respectively. 
[ ]1 2

T
t t t te e e− −=e  and  set

t t te y y= − .  
The parameters of the PID controller are adjusted by a tuner 

based on an identified process model. In this study, a GP 
regression model provides a mean value prediction as well as 
the variance prediction. The variance prediction can be viewed 
as the information about the model confidence. As a result, in 
contrast to traditional applied control, the issue of control 
system robustness should be considered. This issue has a 
major impact on the applicability of the controller scheme. For 
instance, a process out of control or with too aggressive 
control can pose a threat to the safety of a plant. The 
information on the confidence of the prediction enables a 
trade-off between designed performance and safety to be 
considered. Based on this information, the PID controller can 
be tuned based on the requirement of the process.  
 
When the model is not accurate, there is a trade-off between 
performance and safety. To achieve the best performance 
without compromising the safety, one straightforward way is 
to reduce the model uncertainty. Over the course of operation, 
new data are available to enrich the model and provide a better 
prediction. In this work, the GP model is used for 
identification. With the information on the uncertainties of the 
prediction provided by the model, a simple heuristic method is 
used to select the data for the improvement of the model. 
Moreover, a tuning scheme with the objective function based 
on the uncertainty information is also proposed to provide 
satisfactory control.   
 

III. PROGRESSING GAUSSIAN PROCESS MODELS 

A. Gaussian Process Models 
A GP model is a collection of random variables which have a 
joint Gaussian distribution. Given data ( ),=D X y , the 
inference on 1ty +  can be readily obtained since the joint 
density ( )1,tP y + y  is also Gaussian, the posterior distribution 
is given by 
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where 
 

1
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1tµ +  is the mean prediction at 1N +x  and 2

1tσ +  is the standard 
deviation of this prediction and 

[ ]1 1 1 1( ) ( , ) ( , )T
t t t tC C+ + +=g x x x x x . C  is the covariance 

matrix of the data defined by the parameterized covariance 
function ( ),ij i jC C= x x . The vector 1

1( )T
t

−
+g x C  can be 

viewed as a smoothing term which weights the training outputs 
to make a prediction for the new input vector 1t +x . Eq (5) 
provides a confidence level on the model prediction as the 
higher variance value indicates the region of the input vector 
contains few data or is corrupted by noise. GP is fully defined 
by its mean and variance. The covariance function is 
non-trivial and a common choice is  
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where 0 1, , , , ,k ija a d w s δ  and 0v  are the hyper-parameters to 
be determined. Hyper-parameter 0v  controls the overall scale 
of the local correlation, 1a  allows a different distance measure 
in each input dimension, and s  is the estimate of the noise 
variance. The hyper-parameters can be obtained by the 
maximization of the log-likelihood. [6] 
 

B. Progressing GP model update 
The tuning and the performance of the proposed scheme 

will depend on the accuracy of the identified model. The 
model may be improved by using new data. Without data 
selection, the new data may not improve prediction and they 
may cause a waste on computation. To this end, the GP model 
provides a straightforward way of selecting a criterion. 
  Besides the mean of the predictive distribution, the GP 
model also provides the variance that indicates the uncertainty 
in the model. A large variance indicates a less confident 
prediction while a small band implies greater confidence on 
the prediction. Based on the predictive variance, it is possible 
to select data in the region of high uncertainty. A simple 
heuristic method is proposed. Based on the predictive variance 
of the output, only the data in close proximity of the highly 
uncertain area are admitted. The data points are selected based 
on the distance from the point with high variance. When a 
particular point has higher uncertainty, the neighboring data 
can be included to provide richer information for the point, so 
the model performance can be improved. Consequently, the 
overall control performance can be enhanced. The admitted 
data, admy  will satisfy the criterion 
 

[ ]admy y w y wσ σ∈ − +  (7) 
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where w  is the present value that determines the range of the 
allowable data (Fig. 2). In Fig. 2, the solid line represents the 
actual process output while the dotted line represents the GP 
model. The grey shaded band represents 2µ σ±  and gives an 
indication of the uncertainty in prediction of y. The yellow 
band is the admissible region, meaning that the output data 
within this range and the corresponding input data will be used 
to update the model subsequently.   
 

ty

1t − t t

2µ σ+

2µ σ−

µ

wσ

tu
1tu −

tu

 
Fig. 2 The data admission region 

 
At the successive control stage, the model may be updated 

with new data and the control action can be evaluated based on 
the updated model. Let a particular admissible output data at 
time t   be newy  and the corresponding input data which 
consist of the current value and a past value be newx  (Fig. 2). 

 
[ ]1

T
new t t tu u y−=x  (8) 

 
An operation that adds the new data to the initial data set is 
defined as  
 

[ ]new
+ ←X X x  (9) 

[ ]newy+ ←y y  (10) 

 
where +X  and +y  refer to the input and output vectors after 
new data are added. With this new set of data, the model is 
updated with the new hyper-parameters. In the following 
sections, for brevity of notation, the superscript is omitted 
from +X  and +y . All the data used in the derivation implies 
the current set. 
 

IV. GAUSSIAN PROCESS MODEL BASED PID TUNING 
The identified GP model can be directly applied to tuning 

PID controllers. By minimizing an objective function, the 
optimal control action can be obtained. This solution can be 
obtained by the gradient method with the necessary gradient 
calculation. The objective function for minimum variance 
control is  

( ){ }2 2
1 1

r
t t tJ E y uµ λ+ += − + ∆  (10) 

 
where 1

r
ty +  is a reference target. The relative importance 

between the reference tracking and aggressiveness is 
determined by λ . Because { } { } { }2 2Var y E y E y= −  and 
GP provides uncertainty in terms of prediction variance, the 
objective function can be written as  
 

( )2 2 2
1 1 1

r
t t t tJ y uµ σ λ+ + += − + + ∆  (11) 

 
PID is tuned by minimizing the objective function J  with the 
aim to design a control action that will minimize the difference 
between the process output and the desired output, and the 
variance of the controller output with consideration to the 
model uncertainty. Compared to conventional PID tuning, the 
variance prediction term is included with the mean prediction. 
This means that the optimization takes into account this 
variance information, resulting in a more robust control 
system.   

In order to use GP to tune PID, a gradient based 
optimization algorithm is derived. The Jacobian is  
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The partial derivative terms of Eq.(13) can be expanded 
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and  
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where 1 1 1[ ]T

t t t m t t lu u y y+ − + − +=x   . The 
subscripts, m  and l , refer to the past m  inputs and the past l  
outputs respectively. 

Furthermore, the derivative of the covariance function in Eq. 
(6) is  
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Calculating each term using Eqs.(13)-(19), the Jacobian 
matrix is obtained and the optimal control action that 
minimizes Eq.(11) can be evaluated. The control action can be 
determined by evaluating the minimal of Eq.(12) and the 
corresponding PID parameters are obtained. This can be 
directly applied to control of the process in order to achieve 
the desired output. 
 

V. CASE CASED STUDY 
pH neutralization is fairly common among many chemical 
processes and in industries such as wastewater treatment. The 
model equations in this study are taken from Nahas et al.[9]. It 
is a pH continuous stirred-tank reactor (CSTR) system as 
shown in Fig. 3. The three input streams are acid (HNO3), 
buffer (NaHCO3) and base (NaOH) respectively.  
 
The system can be described by two reaction invariants, three 
nonlinear ordinary differential equations and one nonlinear 
algebraic equation.  
 

3 3

Charge balance

H OH HCO 2 COaW + − − =       ≡ − − −       
 

 
(20) 

[ ]2 3 3 3

Carbonate ion balance

H CO HCO CObW − =   ≡ + +   
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(22) 

 
where h  is the liquid level, 4aW  and 4bW  are reaction 
invariants of the effluent streams, with 1q  , 2q  and 3q  being 
the acid, buffer and the base flow rate respectively.  The 
nominal conditions and parameters are listed in Table 1 
 

333 ba WWq
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111 ba WWq
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pH

manipulated 
variable

disturbance

controlled 
variable

 
 

Fig. 3 pH CSTR systems 

TABLE I.  PARAMTERS FOR CASE STUDY 

2207 cmA =  1 18.75 ml cm svC − −=  
pK2 10.25=  3

1 3 10 MaW −= ×  
3

3 3.05 10 MaW −= − ×  5
3 5 10 MbW −= ×  

-1
2 0.55 ml sq =  -1

3 15.6 ml sq =  

[ ] 3Buffer 0.03 M NaHCO=  [ ]Base 0.003 M NaOH=  

 
pK1 6.35=  

2
2 3 10 MaW −= − ×  

-1
1 16.6 ml sq =  

[ ] 3Acid 0.003 M HNO=  
 
In this case study, the variance term used in the objective 
functions (Eq.(11)) will be shown useful and then the control 
performance will be presented using the proposed method. For 
the first goal, the data used for the training are obtained from 
the region of pH 7. The distribution of the input and output 
data are concentrated in the region of the proximity of pH 7 
and as a result, the identification of this region will be 
satisfactory.  

In the event that the collected data are rich enough, a 
comparison of the proposed method with neural network 
model based control [4] is made. Fig. 4 shows the result from 
GP PID control based on the direct application of the GP 
model when the data are sufficient implying a good prediction 
and low variance. Again, the set point is changed from pH 7 to 
pH 9 and then from pH 9 to pH 7. It is found that the control 
results are similar for all the 3 cases, including the NN based 
model, the GP model without the variance and the GP model 
with the variance. The GP model without the variance refers to 
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an objective function that is Eq.(11) without the term, 2
1tσ + , on 

the right-hand side,  
 

( )2 2
1 1

r
t t tJ y uµ λ+ += − + ∆  (23) 

 
the NN model and the GP model are similar in terms of the 
model performance. The control algorithm based on these 
models should be similar (Fig. 4). Moreover, the data used in 
identification are sufficient in the region of operation, so the 
variance is small and accordingly the confidence in the 
prediction is high. The GP model with the variance results in 
the performance similar to the model without the variance.  
As the actual operation process data may be insufficient, the 
model built upon these insufficient data is not accurate. The 
consequence of using this model can have a drastic effect on 
the control outcome as illustrated in Fig. 5. It shows the result 
of the inaccurate model and a comparison between the cases of 
using and not using the variance term in the control objective. 
When the variance term is not taken into account, an unreliable 
prediction value is used without any additional check in the 
control action ( Eq.(11) ). It results in a large offset from the set 
point represented by the dash-dot line in Fig. 5. This is because 
the prediction of the calculated input has a large prediction 
error. On the other hand, if the variance is taken into account, 
the compromise between the performance and reliability 
means that the eventual results do not deviate as much while 
the set point is not reached. As this region has less data, a 
higher variance would occur. The response of the system is 
optimized so that it can “hold off” the system from reaching 
the region with high variance. Fig. 6 shows the comparison of 
the PID parameters for GP with and without variance. It is 
shown that the tuning performes better in the case of GP with 
without variance.  This can be viewed as a trade-off between 
safety and the performance. 
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Fig. 4 Comparison of direct GP PID control with variance, direct GP PID 
control without variance and the neural network when the model is accurate 

 

 
Fig. 5 Comparison of direct GP PID control with variance, direct GP PID 
control without variance and the neural network when the model is 
inaccurate.  

(a)

0 10 20 30 40 50 60 70 80 90
0

0.05
k c

0 10 20 30 40 50 60 70 80 90
0

1

2

τ i

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

τ d

Time

(b)

0 10 20 30 40 50 60 70 80 90
0

0.05

k c

0 10 20 30 40 50 60 70 80 90
0

1

2

τ i

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

τ d

Time

Fig. 6 PID parameter tuning: (a) GP with variance (b) GP without variance 

In this case study, the proposed method is applied to a 
continuous process with the changing set-point to demonstrate 
its effect on the control performance and model improvement. 
The process is initially operated at pH 8. Subsequently the set 
point is changed from pH 8 to pH 9 and then back to pH 8. This 
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change is done for a number of repetitions to show how the 
process will respond to the proposed method. Initially, the 
model is only accurate in the proximity of the region of pH 8. 
The model is updated at each change of conditions. With this 
model, the controller is able to achieve the set-point at the 
desired value of pH 8. When the set-point is changed from pH 
8 to pH 9 ( 21 ~ 70, 121 ~ 170t t= = ) the control performance 
drops slightly as shown in Fig. 7. This performance drops a 
little because the information of this region is not rich. As the 
operation is in the close proximity to the initial data and there 
is a relatively small error band, the performance in this case is 
acceptable. A further set-point change to pH 6 is then made 
and the performance deteriorated more drastically. This can be 
explained by the fact that the model is poor in such a region 
because there are scarce data and information available from 
the training data. With the availability of the new data and 
based on the selection criteria, data are admitted when they fall 
within the uncertain region of the model and can be used to 
enrich the model. The region of the admitted data is 
represented by the dotted circle in Fig. 7 . Fig. 8 shows that on 
subsequent return to the set point at pH 8, the control 
performance is improved. The model, because of the 
additional data, is now more accurate, so the improvement in 
the predicted value makes the control performance better. 
Improvement in the control performance is also exhibited 
when the set point is changed to pH 6 and further improvement 
to the model can help attain the desired pH. 

The above case illustrates the importance of the accuracy 
of the model in this proposed model; in fact, all model based 
control depends on the model accuracy. However, compare to 
conventional methods, the information from the GP model is 
used to carry out data selection because not all the data are 
admitted and advantageous in terms of computational load. 
The selection criterion implies that only useful data are used 
for calculation and no extra effort is needed on the data that 
does not contribute to the accuracy of the process model. 

 

 

Fig. 7 GP PID control with initial data rich in the region of pH 8; data in 
dotted-line regions are used to update the model.  

 
Fig. 8 GP PID control with updated model from admitted data. 

VI. CONCLUSION 
For model based control, the integrity of the model is 
important. A new control approach using a GP model around 
its current operation region is developed. The GP approach to 
modeling provides a prediction as well as variance on the 
predictive distribution. This provides a quantitative measure 
on the trust of model. A safety-performance trade-off control 
goal can be achieved based on the controller objective which 
takes into account the prediction and the variance. In the future, 
the framework would be extended to other model based 
control. 
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