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Abstract— We propose a design method for IIR low-pass dif-
ferentiators under a specified maximum pole radius constraint.
In the proposed method, we express the design problem in a
quadratic form with respect to the coefficients of the transfer
function. Since the cost function includes a weighting function,
the frequency-weighting can be specified in the pass-band. Also,
a linear phase property in the pass-band can be achieved similar
to band-pass filters. Using the proposed method, stable IIR low-
pass differentiators can be easily obtained for approximating
the given response. Finally, two numerical examples are given to
illustrate the effectiveness of the proposed method by designing
IIR low-pass differentiators.

I. INTRODUCTION

Digital filters [1]–[32] are widely used in the various
fields such as signal processing, automatic control, and power
system. These can be categorized into two kinds: infinite
impulse response (IIR) digital filters [6]–[11], [13]–[26] and
finite impulse response (FIR) digital filters [12], [27]–[32].
It is well known that the order of IIR digital filters is
usually lower than the one of FIR digital filters to have
equivalent approximation; hence, IIR filters are attractive
for the hardware realization. Digital differentiators are an
important class of digital filters, and several related works
and applications have been published in [11], [25], [33]–
[43]. Furthermore, there are special differentiators which
is referred to as low-pass differentiator in which the low-
frequency elements are differentiated and the high-frequency
elements are deleted. The low-pass differentiators are well-
used for several applications [44]–[50].

The design problems of IIR filters (differentiators) are
usually non-linear optimization problems; hence, the sta-
bility constraints should be satisfied, i.e., the all poles are
placed within a unit circle. It should be noted that some
iteration procedure or algorithm is often required in order
to solve the design problem. In this paper, we consider to
approximate an ideal response of low-pass differentiators by
a rational transfer function. Since the design problem of
low-pass differentiators is similar to that of IIR band-pass
filters, the design problem is formulated by a cost function
proposed in [10] with the weighting function. The accuracy
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of the magnitude response and the phase linearity can be
adjusted with the frequency-weighting factors. Additionally,
we propose an algorithm to compute the coefficients of the
transfer function in which the maximum pole radius can be
specified.

Filter designers can easily obtain the low-pass differentia-
tors with linear phase property, and the low-pass differentia-
tors are always stable. Since low-pass differentiator is a wider
class of full-band differentiator, low-pass differentiators are
more useful and applicable in practical use. Of course, the
proposed method includes the design of full-band differen-
tiator as a special cases.

Finally, in order to demonstrate the effectiveness of the
proposed method, we give two examples for the design of
low-pass differentiators. As a result, we confirm the phase
linearity in the pass-band, and the all poles are located within
the specified circle.

II. PROBLEM FORMULATION

First of all, we formulate the design problem of a low-pass
differenciator. We define a transfer function H(z−1) as

H(z−1) =
B(z−1)

A(z−1)
=

n
∑

l=0

blz
−l

m
∑

k=0

akz
−k

. (1)

In (1), the denominator polynomial A(z−1) of order m and
the numerical polynomial B(z−1) of order n are respectively
expressed as

A(ω) = aT ·
[

1, z−1, · · · , z−m
]T

(2)

B(ω) = bT ·
[

1, z−1, · · · , z−n
]T

(3)

where the superscript T indicates transposition of the matrix
(vector), a and b are the denominator and the numerator
coefficients vector defined as

a =
[

a0 a1 · · · am
]T

(4)

b =
[

b0 b1 · · · bn
]T

(5)

with a0 = 1.
Now, the coefficients of H(z−1) can be computed in

order to approximate an ideal response Hd(z
−1). Here, we

consider a cost function

J =

∫ π

0

W (ω)
∣

∣B(ω)−Hd(ω)A(ω)
∣

∣

2
dω (6)
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where W (ω) is a weighting function. Based on a change of
variable as z = ejω (j2 = −1) on a closed interval [0, π], we
can get A(z−1), B(z−1) and W (z−1). The problem we treat
here is formulated as an optimization problem to compute
the filter coefficients which minimize (6). Hence, the filter
coefficients is obtained as a solution of the problem.

0 
ω

1

Hd (ω)

π

Fig. 1. Ideal response of full-band differentiator.

0 
ω

Hd (ω)

πωp ωs

π
ωp

Fig. 2. Ideal response of low-pass differentiator.

A. Ideal response of low-pass differentiator

Fig. 1 shows the ideal response of full-band differentiator,
and Fig. 2 indicates the ideal response of low-pass differen-
tiator.

With linear phase characteristic, the ideal response of low-
pass differentiator Hd(ω) is expressed as

Hd(ω) =











ω

π
ej(0.5π−τdω) 0 ≤ ω ≤ ωp

0 ωs ≤ ω ≤ π

(7)

where ωp is a cut-off frequency of low-pass differentiator.
Here, the characteristic in [0, ωp] is a differentiation, on the
other hand, a cutoff characteristic in [ωs, π] is desired. The
group delay τd is

τd = τs + 0.5 (8)

where τs is an integer.
The group delay τd indicates the delay of each frequency

component, and it should be a constant in the pass-band.
Also a weighting function is set as

W (ω) =







Wp 0 ≤ ω ≤ ωp

Ws ωs ≤ ω ≤ π.

(9)

It should be noted that, since Wp is a weighting of the pass-
band, the accuracy in the pass-band is improved as Wp is
large. However, as a trade-off, then the accuracy in the stop-
band will be degenerated. Also, the closed interval [ωp, ωs]
is a transition zone. If the transition zone is not employed,
we have ωp = ωs.

B. Quadratic form

Substituting (7) and (9) into (6), we have

J = Wp

∫ ωp

0

Φ(ω)dω +Ws

∫ π

ωs

Ψ(ω)dω (10)

where

Φ(ω) =

∣

∣

∣

∣

∣

n
∑

l=0

ble
−jlω − j

ω

π

m
∑

k=0

ake
−j(k+τd)ω

∣

∣

∣

∣

∣

2

(11)

Ψ(ω) =

∣

∣

∣

∣

∣

n
∑

l=0

ble
−jlω

∣

∣

∣

∣

∣

2

. (12)

Using Euler’s formula, (11) is changed to

Φ(ω) =

{

n
∑

l=0

ble
−jlω − j

ω

π

m
∑

k=0

ake
−j(k+τd)ω

}

·

{

n
∑

l=0

ble
−jlω − j

ω

π

m
∑

k=0

ake
−j(k+τd)ω

}

∗

=
ω2

π2

m
∑

k=0

m
∑

k′=0

akak′ cos[(k − k′)ω]

−
2ω

π

m
∑

k=0

n
∑

l=0

akbl sin[(k − l + τd)ω]

+

n
∑

l=0

n
∑

l′=0

blbl′ cos[(l − l′)ω] (13)

where the superscript ∗ is a complex conjugate. Also, (12)
can be expressed as

Ψ(ω) =

n
∑

l=0

n
∑

l′=0

blbl′ cos[(l − l′)ω]. (14)

It follows from (13) and (14) that (10) can be expressed as

J =

m
∑

k=0

m
∑

k′=0

akak′Pk,k′ + 2

m
∑

k=0

n
∑

l=0

akblQk,l

+
n
∑

l=0

n
∑

l′=0

blbl′Rl,l′ (15)
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where

Pk,k′ =
Wp

π2

∫ ωp

0

ω2 cos[(k − k′)ω]dω (16)

Qk,l =−
Wp

π

∫ ωp

0

ω sin[(k − l + τd)ω]dω (17)

Rl,l′ =Wp

∫ ωp

0

cos[(l − l′)ω]dω

+Ws

∫ π

ωs

cos[(l − l′)ω]dω. (18)

Furthermore, we can compute (16)-(18) without any integral
as

Pk,k′ =







Wpω
3

3π2
, if k − k′ = 0

P k,k′ , if k − k′ 6= 0
(19)

Qk,l =
Wp

π

{

ωp cos[(k − l + τd)ωp]

k − l + τd

−
sin[(k − l + τd)ωp]

(k − l + τd)2

}

(20)

Rl,l′ =







Wpωp +Ws(π − ωs), if l − l′ = 0

Rl,l′ , if l − l′ 6= 0
(21)

where

P k,k′ =
Wp

π2

{

ω2
p sin[(k − k′)ωp]

k − k′

+
2ωp cos[(k − k′)ωp]

(k − k′)2
−

2 sin[(k − k′)ωp]

(k − k′)3

}

(22)

Rl,l′ =
Wp sin[(l − l′)ωp]−Ws sin[(l − l′)ωs]

l − l′
. (23)

Now, let Pk,k′ , Qk,l and Rl,l′ be the elements of P , Q
and R, respectively, i.e.,

P :=











P00 P01 · · · P0,m

P10 P11 · · · P1,m

...
...

. . .
...

Pm,0 Pm,1 · · · Pm,m











(24)

Q :=











Q00 Q01 · · · Q0,n

Q10 Q11 · · · Q1,n

...
...

. . .
...

Qm,0 Qm,1 · · · Qm,n











(25)

R :=











R00 R01 · · · R0,n

R10 R11 · · · R1,n

...
...

. . .
...

Rn,0 Rn,1 · · · Rn,n











(26)

where P is (m+1)×(m+1) matrix, Q is (m+1)×(n+1)
matrix and R is (n + 1) × (n + 1) matrix. Then, (15) can
be expressed as a quadratic form:

J = aTPa+ 2aTQb+ bTRb. (27)

The feature of the proposed method is the cost function J

is formulated as the quadratic form without any integration.
Hence, we can achieve a good performance since the com-
putation of P , Q and R do not require any approximate
calculation.

III. POSITIVE REALNESS

The positive realness of denominator polynomial is ex-
pressed as [11]

Re[A(ejω)] > 0, 0 ≤ ω ≤ π (28)

where Re[A(ejω)] indicates the real pert of A(ejω). Eq. (28)
is the positive realness condition in the case of rm = 1
where rm is a maximum pole radius. Now, let us consider
the general case that the maximum pole radius is rm(≤ 1),
then, we have

Re[A(rmejω)] > 0, 0 ≤ ω ≤ π. (29)

We discretize ω in [0, π] as Ωi, i = 1, 2, · · · , L. Next,
based on Ωi, i = 1, 2, · · · , L, we consider L constraints.
Then, the constraints are expressed as

Cv ≤ e (30)

with

C =−















cos(Ω1)
rm

cos(2Ω1)
r2m

. . .
cos(mΩ1)

rmm
cos(Ω2)

rm

cos(2Ω2)
r2m

. . .
cos(mΩ2)

rmm
...

...
. . .

...
cos(ΩL)

rm

cos(2ΩL)
r2m

. . .
cos(mΩL)

rmm

O















(31)

v =[a1, a2, · · · , am, b0, b1, . . . , bn]
T (32)

e =[1, 1, · · · , 1]T (33)

where C is L× (m+ n+ 1) matrix, v is (m+ n+ 1)× 1
matrix, and e is L × 1 matrix. This is a positive realness
constraint when the maximum pole radius is rm(≤ 1). In
this paper, we use this constraint in order to compute the
IIR low-pass differentiators.

IV. DESIGN ALGORITHM

Eq. (27) can be converted to

J =

[

a

b

]T [

P Q

QT R

] [

a

b

]

=

[

1
v

]T [

P0,0 q

qT R

] [

1
v

]

=P0,0 + 2qv + vTRv (34)

where P0,0 is a scalar, q is (m + n + 1) × 1 matrix, R is
(m+ n+ 1)× (m+ n+ 1) matrix.

Hence, the problem becomes a constraint quadratic pro-
gramming problem which is well-structured. The design
algorithm is summarized as follows.

step1 Compute q and R according to the given specifi-
cation.

step2 Compute C by rm.
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step3 Solve the constraint problem:

min
v

2qv + vTRv

subject to Cv ≤ e.
(35)

Since (35) is a constraint quadratic programming problem,
we employ quadprog function of MATLAB.

V. DESIGN EXAMPLE

In order to show the effectiveness of the proposed method,
we give two examples for the design of the low-pass differ-
entiators. The specifications are m = 6, n = 6, τs = 3(τd =
3.5), Wp = 1 or 100, Ws = 1, ωp = 0.6π, ωs = 0.7π,
rm = 0.86 and L = 512 in Example 1. Also, m = 5,
n = 12, τs = 6(τd = 6.5), Wp = 1 or 100, Ws = 1,
ωp = 0.7π, ωs = 0.8π, rm = 0.9, and L = 512 in Example
2. The results of the design of the low-pass differentiators
are shown in Fig. 3 (Example 1) and Fig. 4 (Example 2)
where the solid line indicates the case of Wp = 1, broken
line indicates the case of Wp = 100, and the small circles
in Fig. 3 (c) and Fig. 4 (c) show the location of poles which
are computed with Wp = 100.

From Figs. 3 and 4, we can see that the magnitude
responses and phase responses are both well-approximated,
and the phase linearity can be improved as the weighting
function in the pass-band is large. On the other hand, the
sharpness of the cutoff frequency is degenerated as the
weighting function is enlarged. Hence, we find a tradeoff
between the accuracy in the pass-band and the sharpness of
the cutoff frequency.

Furthermore, the poles are located within the specified
circle due to the constraint of the positive realness with
prescribed pole radius constraint. We confirm the proposed
method can place the poles within the specified circle.

VI. CONCLUSION

We have proposed the design algorithm for IIR low-pass
differentiators based on the positive realness. The coefficients
of the low-pass differentiators can be computed by solv-
ing the constrained quadratic problem. Since the proposed
algorithm can specify the frequency-weighting in the pass-
band frequency, the accuracy of the frequency response in
the specified frequency can be adjusted. From the numerical
examples, we show that the magnitude response and group
delay of the low-pass differentiators are both well approxi-
mated, and the poles are located within the specified circle.
Hence, we confirm the effectiveness of the proposed method.
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Fig. 3. The characteristics of the low-pass differentiator in Example 1.
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