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Abstract— This paper deals with a design problem of an
adaptive and performance-driven PID control with an adaptive
Neural Network (NN) feedforward control for discrete-time
systems with a parallel feedforward compensator (PFC). By
adopting PFC design scheme based on FRIT approach, which
can design PFC only using an input/output experimental data,
a performance-driven adaptive PID control will be proposed.
The effectiveness of the proposed PFC design and adaptive
and performance-driven PID control method will be confirmed
through numerical simulations for an uncertain discrete-time
system.

I. INTRODUCTION

PID control is one of the most common control schemes
and it has been applied to many industrial process and
mechanical systems. However, in the case where there are
some changes of system properties, it is difficult to maintain
the desired control performance and stability during opera-
tion because most PID parameter tuning is done off line.
Therefore, a great deal of attention has been focused on
auto-tuning and adaptive PID methods [1], [2], [3]. Recently,
an auto-tuning and an adaptive PID control strategies based
on the almost strictly positive real (ASPR) property of
the controlled system have been proposed [4], [5]. These
adaptive PID schemes based on the ASPR property of the
system can guarantee the asymptotic stability of the resulting
PID control system. Unfortunately, the ASPR conditions
are very severe restrictions for practical applications of
the adaptive PID control. To overcome this problem, an
introduction of the parallel feedforward compensator (PFC)
has been proposed [4], [6]. This method fulfills the ASPR
conditions of augmented system, which consists of the plant
and the PFC, by designing the PFC accordingly. Although
several methods have been proposed with respect to the
design scheme of such a PFC, most of them need a priori
informations of the controlled plant in order to design the
PFC. To obtain a priori informations of the plant, we need
to derive the system model or do experiment several times.
This is time-consuming task and becomes a problem when
considering the time and costs. From this reason, recently,
PFC design method via fictitious reference iterative tuning
(FRIT) approach has been proposed for continuous time
system [7], [8] and for discrete time systems [13]. FRIT
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method can optimizes controller parameters for the uncertain
plant from only one shot experimental input/output data
without using the plant model [9]. By applying FRIT method
to PFC design, PFC parameters could be optimized without
using a priori informations [10]. However, the affects from
the introduced PFC resulted in degradation of the control
performance in the output tracking control because the adap-
tive controller is designed for the augmented system with
the PFC. To overcome this problem, a method introducing a
feedforward input generated by an adaptive Neural Network
(NN) has been proposed concerning to output feedback
controls [11], [12]. By using this method, one can attenuate
affects from the PFC. Unfortunately however, one cannot
maintain ASPRness if there are some changes in the plant.

In this paper, we propose an adaptive and performance-
driven PID control system design with an adaptive NN
feedforward control for discrete-time systems with a PFC.
In addition, the effectiveness of the proposed method will be
confirmed through a numerical simulation.

II. CONTROL SYSTEM DESIGN [13]

A. Problem Statement

Consider a SISO discrete-time system G(z) expressed as

x(k + 1) = Ax(k) + bu(k)
y(k) = cTx(k)

(1)

where x(k) ∈ Rn is a state vector, u(k) ∈ R and y(k) ∈ R
are the input and the output of the system, respectively.

Suppose that the reference signal yr(k) which the output
y(k) is required to track are generated by the following
exosystem:

ω(k + 1) = Aωω(k)
yr(k) = cTωω(k)

(2)

For the system (1) and reference signal yr(t) given in (2),
we impose the following assumptions.

Assumption 1: There exist an ideal state x∗(k) and an
ideal input v∗(k) which attain perfect tracking such that

x∗(k + 1) = Ax∗(k) + bv∗(k)
y(k) = cTx∗(k) ≡ yr(k)

(3)

and they are given by functions of ω(k) such as x∗(k) =
π(ω(k)) and v∗(k) = c(ω(k)).

Assumption 2: For the system (1), there exists a PFC
of arbitrary order nm:

xf (k + 1) = Afxf (k) + bfu(k)
yf (k) = cTf xf (k) + dfu(k)

(4)
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such that the resulting augmented system with the PFC:

x(k + 1) = Ax(k) + bu(k)
xf (k + 1) = Afxf (k) + bfu(k)

ya(k) = y(k) + yf (k)
= cTx(k) + cTf x(k) + dfu(k)

(5)

is ASPR.

B. Adaptive PID Control System Design

Under these assumptions, an adaptive PID control system
design with an adaptive NN feedforward control can be
designed as follows for discrete time systems with a PFC
which is introduced so as to render the resulting augmented
control system ASPR [13].

First, consider approximation of the ideal forward input
v∗(k) by a radial basis function (RBF) NN. v∗(k) is ap-
proximated by the form of RBF NN as

vnn(k) = WTS(ω(k)) (6)

where W = [w1, · · ·, wl]
T ∈ Rl is the weight vector, l

is the number of NN nodes (weight number) and S(ω) =
[s1(ω), · · ·, sl(ω)]T is the radial basis function vector. This
basis function vector S(ω) is generally designed by the
Gaussian functions such as

si(ω) = exp

[
−(ω − µi)

T (ω − µi)

η2i

]
(7)

i = 1, 2, · · ·, l

where µi = [µi1, · · ·, µiq]
T is the center of the receptive field

and ηi is the width of the Gaussian function.
Under Assumption 1, it has been clarified that, for a

sufficiently large l and a compact set Ωω ⊂ Rq , there exists
an ideal constant weight vector W ∗ such that [14]

W ∗ := arg min
W∈Rl

{ sup
ω∈Ωω

|v∗ −WTS(ω)|} (8)

and thus the ideal input v∗(k) can be approximated by

v∗(k) = W ∗TS(ω) + ε(ω), |ε(ω)| ≤ ε∗ (9)

where ε(ω) is an approximation error.
Finally, an adaptive PID with adaptive NN feedforward

input is designed as follows.

u(k) = −θ̃
T
(k)z̃(k) + ŴT (k)S(ω(k)) (10)

where

θ̃
T
(k) =

[
θ̃p(k), θ̃i(k), θ̃d(k)

]
z̃(k) =

[
êa(k), ēai(k − 1),− 1

T
ēa(k − 1)

]T (11)

êa(k) = y(k) + cT x̄f (k)− yr(k) (12)

ēai(k) = ēai(k − 1) + T ēa(k) (13)

ēa(k) = ȳa(k)− yr(k) (14)

Exsosystem

NN
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+
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+

Fig. 1. Adaptive PID control system with adaptive NN feedforward

Here, ȳa(k) = y(k)+ ȳf (k) and ȳf (k) is a PFC output with

the input ue(k) = −θ̃
T
(k)z̃(k) and T is a sampling period.

The parameter adjusting laws are given by

θ̃(k) = θ̃(k − 1) + Γz̃(k)ēa(k)− σθ̃(k)

= σ̄θ̃(k − 1) + σ̄Γz̃(k)ēa(k) (15)

σ̄ =
1

1 + σ
, σ > 0, Γ = ΓT > 0

Ŵ (k) = σ̄nŴ (k − 1)− σ̄nΓnS(ω(k))ēa(k) (16)

σ̄n =
1

1 + σn
, σn > 0, Γn = ΓT

n > 0

with design parameters Γ, Γn, σ and σn. In this case, the
augmented output error ēa(t) can be obtained from (5), (10)
and (15) as

ēa(k) =
êa(k)− σ̄df θ̃

T
(k − 1)z̃(k)

1 + σ̄df z̃
TΓz̃(k)

(17)

by using available signals. This means that the proposed
adaptive PID controller can be designed without causality
problems. Fig. 1. shows the block diagram of the control
system. Then for this control system, the following theorem
is known [13].

Theorem 1: Under the assumptions 1 and 2, with the
control input (10), all the signals in the control system are
bounded.
Remark 1: In the case where there is no NN feedforward
input term, one can not obtain the perfect output tracking
result of y(t) ≡ yr(t) because of the affects from the
PFC output yf (t) even when the perfect output tracking
ya(t) ≡ yr(t) is achieved for augmented system with the
PFC. The purpose of adding adaptive NN feedforward input
term within the augmented system with a PFC is to achieve
the perfect output tracking y(t) ≡ yr(t) ideally. If the
v(t) which is the output of the NN is equal to the ideal
feedforward input v∗(t) which can attain the perfect output
tracking y(t) ≡ yr(t), one can easily confirm that ēa(t) → 0
leads e(t) = y(t)− yr(t) → 0. Thus by adding an adaptive
NN feedforward input v(t) = ŴT (k)S(ω(k)), if the error
ēa(t) becomes small then one can expect small tracking error
e(t) accordingly.

III. PFC DESIGN VIA FRIT APPROACH

In this section, we present a design method of a PFC which
using only the input/output data of the controlled system.
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Fig. 2. Closed-loop systems

By this method, even if the system model of the controlled
system is unknown, appropriate PFC can be designed [10].

A. Design Principle

Consider a closed-loop system for a single input/output
system G(z) with a controller C(z,ρC) and a PFC
H(z,ρH), which are parameterized by ρ = [ρC

T ρH
T ]T ,

as shown in Fig. 2. In the following, we use notations
C(ρC) and H(ρH) instead of C(z,ρC) and H(z,ρH) for
convenience.

Suppose that the controller and the PFC with the parameter
ρ = [ρC

T ρH
T ]T are satisfies the following assumptions.

Assumption 3: H(ρH) = 0 with ρH = 0.
Assumption 4: C(ρC) = ρc1(constant) with

ρC = [ρC1, 0, · · · , 0]T .

In this case, the closed-loop system from r to the aug-
mented output ya(ρ) with a controller C(ρC) and a PFC
H(ρH) can be expressed by

Gac(ρ) =
(G+H (ρH))C(ρC)

1 + (G+H (ρH))C(ρC)
(18)

Here, we assume that one can obtain an input/output data set
{u0(k), y0(k)} for appropriate controller C(ρC0) and PFC
H(ρH0) with parameters ρ0 = [ρC0

T ρH0
T ]T . Under this

statement, the objective here is to obtain a PFC which renders
the augmented system with the PFC ASPR.

To this end, we first consider a desired SPR system:

ySPR = GSPRr (19)

and then consider to find a parameter ρ = [ρC
T ρH

T ]T

which minimizes the error between SPR model output ySPR

and the obtained augmented system’s output ya(ρ, k). That
is, to find a parameter ρ = [ρC

T ρH
T ]T which minimize

the following performance function:

J(ρ) =

N∑
k=0

(ya (ρ, k)− ySPR)
2 (20)

is objective. However, this performance function cannot be
obtained directly, because the plant model G(z) is unknown.
Therefore we adopt FRIT approach to the parameter tuning.

B. PFC Parameter Tuning by FRIT Approach

In order to achieve the objective of PFC design by using
an input/output data set {u0(k), y0(k)}, here FRIT approach
is considered.

For the closed-loop system given in Fig. 2, let’s consider
a signal r∗(ρ, k) which satisfies the following relation for
any parameter vector ρ = [ρC

T ρH
T ]T :

C(ρC) (r
∗ (ρ, k)− ya0 (ρ, k)) = u0(k) (21)

where ya0(ρ, k) is the augmented output with the PFC output
H(ρH)u0(k):

ya0(ρ, k) = y0(k) +H(ρH)u0(k) (22)

This leads

r∗(ρ, k) = C(ρC)
−1u0(k) + ya0(ρ, k)

= C(ρC)
−1u0(k) + y0(k) +H(ρH)u0(k)(23)

r∗ (ρ, k) obtained from (23) is called ‘fictitious reference
signal’. Taking this signal r∗(ρ, k) as a reference signal,
the control system in Fig.1 with controller and PFC of any
parameter vector ρ gives the input u0(k) and the output
y0(k).

Now, impose the following assumption.

Assumption 5: There exists an ideal parameter vector
ρd = [ρT

Cd ρT
Hd]

T with ρCd = [K∗, 0, · · · , 0] such that the
obtained closed-loop system with the controller C(ρCd) =
K∗ and the PFC H(ρHd)can be expressed by the given SPR
model GSPR . That is,

G
SPR

=
(G+H (ρHd))K

∗

1 + (G+H (ρHd))K
∗ (24)

Under Assumption 3, we have the following relation.

y0(k) = ya0(ρd, k)−H(ρHd)u0(k)

= GSPR

(
K∗−1u0(k) + y0(k) +H (ρHd)u0(k)

)
−H(ρHd)u0(k) (25)

From this relation in (25), we define a virtual output ỹ(ρ̄, k)
for the system with a controller and a PFC with a parameter ρ̄
as follows by using the input/output data set {u0(k),y0(k)}.

ỹ(ρ̄, k) = G
SPR

(C (ρ̄C)
−1

u0(k) + y0(k) +H (ρ̄H)u0(k))

−H(ρH)u0(k) (26)

ρ̄C = [ρ̄c1, 0, · · · , 0]T

Then, consider minimizing the following performance func-
tion:

JF (ρ̄) =

N∑
k=0

(ỹ (ρ̄, k)− y0(k))
2 (27)

The obtained optimal ρd by this FRIT approach can be
expected to guarantee the minimization of the performance
function given in (20) [10].

Now, consider a typical PFC:H(z) given as the following
nth compensator.

H(z) =
b0z

n + b1z
n−1 + · · ·+ bn

zn + a1zn−1 + · · ·+ an
(28)
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Here, we approximate this PFC with nmth FIR model as
follows:

H(z) = f0 + f1z
−1 + f2z

−2 + · · ·+ fnmz−nm (29)

Then the virtual output ỹ(ρ̄, k) can be represented as

ỹ(ρ̄, k) = ξT ρ̄+G
SPR

y0(k) (30)

where ξ = [ξ0 ξ1 ξ2 · · · ξnm+1]
T , ξ0(k) = G

SPR
u0(k),

ξi(k) = (GSPR − 1)u0(k + 1 − i) and ρ̄ = [K∗−1 f0 f1 ·
· · fnm ]T .

From (30), we obtain
ỹ(ρ̄, 0)
ỹ(ρ̄, 1)

...
ỹ(ρ̄, N)

 =


ξ0(0) ξ1(0) · · · ξnm+1(0)
ξ0(1) ξ1(1) · · · ξnm+1(1)

...
ξ0(N) ξ1(N) · · · ξnm+1(N)

 ρ̄

+
[
y0SPR(0), y0SPR(1), · · ·, y0SPR(N)

]T
= Φρ̄+ Y 0SPR

(31)

where y0SPR
(k) = G

SPR
y0(k) and

Y 0SPR
= [y0SPR

(0) y0SPR
(1) · · · y0SPR

(N)]
T
.

Moreover, by defining Y 0 = [y0(0) y0(1) · · · y0(N)]
T
,

the performance function JF (ρ̄) can be represented as

JF (ρ̄) =

N∑
k=0

(ỹ (ρ̄, k)− y0(k))
2

= ∥Φρ̄+ Y 0SPR
− Y 0∥2

=
∥∥Φρ̄− Ȳ

∥∥2 (32)

where Ȳ = Y 0 − Y 0SPR
. Then, the optimal ρd which

minimize the performance function JF (ρ̄) can be obtained
by

ρd =
(
ΦTΦ

)−1

ΦT Ȳ (33)

IV. PERFORMANCE-DRIVEN ADAPTIVE CONTROL

SYSTEM DESIGN

ASPR conditions of augmented system might not be hold
when the system have changed during the operation. In this
case, the control performances would deteriorate and the
system would be unstable in the worst case. Conversely, by
monitoring the control performance, it is possible to detect
a change of the system. If it is determined that the system
has changed, by redesigning the PFC, the control system
can be kept to be stable. In the following, we will propose
a performance-driven PID control system design for discrete
time systems.

A. The Robustness of The Designed PFC

For preparation, the robustness of the designed PFC should
be considered. The designed PFC must be supposed to render
the augmented system with the PFC ASPR if the perfor-
mance function was minimized. Unfortunately however, the
obtained closed loop system with the designed parameter
vector ρ̄ does not perfectly match to the ideal SPR model

GSPR in a practical sense. The resulting augmented system
Ga with the PFC H(ρ̄H) can be represented by

Ga = G+H(ρ̄H) = G∗
ASPR

(1 + ∆) (34)

where G∗
ASPR

is the ideal ASPR model given by G∗
ASPR

=
G+H(ρHd), and ∆H and ∆ are defined as follows:

∆H = 1−H(ρ̄H)
−1

H(ρHd), (35)

∆ = G∗
ASPR

−1H(ρ̄H)∆H (36)

For the ASPR-ness of the augmented system (34) with
a mismatch ∆ has been investigated as in the following
theorem [6].

Theorem 2: The augmented system (34) is ASPR if
(a) G∗

ASPR
is ASPR. (b) ∆ ∈ RH∞. (c) ∥∆∥∞ < 1.0.

It is apparent that the conditions (a) and (b) in Theorem 2
are satisfied for the obtained augmented system (34). Thus,
if the mismatch ∆ between the ideal PFC H(ρHd) and
the obtained PFC H(ρ̄H) are sufficiently small, then the
resulting augmented system is ASPR even if the designed
parameter vector ρ̄ does not perfectly match to the ideal
parameter vector ρd.

The performance function (27) can be evaluated as fol-
lows.

JF (ρ̄) ≤ δH
2δPH

2
N∑

k=0

u0(k)
2 (37)

where, δH = ∥∆H∥∞ and
δPH =

∥∥(G
SPR

(n)− 1
)
H(ρ̄H , n)

∥∥
∞. Then, by defining

βu =
N∑

k=0

u0(k)
2, we have

δH
2 ≥ JF (ρ̄)

δPH
2βu

(38)

On the other hand, from (36), ∥∆∥∞ can be evaluated by

∥∆∥∞ = ∥G∗
ASPR

−1H(ρ̄H)∆H∥∞ ≤ δGHδH (39)

where δGH = ∥G∗
ASPR

−1H(ρ̄H)∥∞. This means that
δGHδH < 1.0 is necessary condition to be ASPR. Now,
from (38), define the lower limit of δH as

δ̄H =

√
JF (ρ̄)

δPH
2βu

(40)

Then, at least δGH δ̄H < 1.0 have to be fulfilled to be
δGHδH < 1.0. The condition δGH δ̄H < 1.0 is the necessary
condition that to fulfill the condition (c) of Theorem 2.

Remark 2: Theorem 2 is the sufficient condition that the
control system would be ASPR. Therefore, there exist ASPR
control system which does not fulfill the conditions of
Theorem 2. However, as an one of the standard, when it
is δGH δ̄H ≥ 1.0, we redesigning the PFC.
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B. Performance Evaluation

We consider adopting the minimum variance performance-
index (MV-index) which is common performance evaluation
method [15].

The MV-index ηp is defined by

ηp(t) =
σ2
MV

σ2
y(t)

(41)

σ2
MV is the minimum variance of the output error signal and

σ2
y is a variance given later.
For this index, the inequality 0 ≤ ηp ≤ 1 holds and a

higher value of ηp indicates good control performance. In the
proposed method, we calculate ηp at time tm by using a data
set {ut(k), yt(k)} obtained in the time interval [tm−T, tm]
with a period of T0. Thus, the updating time of ηp is given
by tm = T +mT0(m = 0, 1, · · ·) and then a variance σ2

y in
the time interval [tm − T, tm] is given by

σ2
y(t) =

N∑
k=0

(y(k)− yr(k))
2

N
(42)

here, N is the number of data set which obtained in the time
interval [tm − T, tm].

C. Performance-Driven PFC Design

According to the value of updated MV-Index ηp, we
redesign the PFC as follows:

Step 1: Set an assessment criterion η∗(0 ≤ η∗ ≤ 1).
Step 2: Update MV-Index ηp at updating time tm.
Step 3: If ηp ≥ η∗, then assess that the control performance
is good and go back Step 2 without redesigning of PFC. If
ηp < η∗, then assess that the control performance is poor
and go Step 4.
Step 4: Using a data set {ut(k), yt(k)} obtained in the time
interval [tm − T, tm], redesign PFC by the FRIT method.
Step 5: Calculate δGH δ̄H of old PFC and redesigned PFC
and check the values of δGH δ̄H . When δGH δ̄H for re-
designed PFC is less than 1.0 and the redesigned one is lower
value than old one then use redesigned PFC, otherwise use
old one.

V. SIMULATION

To confirm the effectiveness of the proposed method, this
section shows numerical simulation results.

Let’s consider a tracking control of the following SISO
discrete-time system with the sampling period of 1.0 [s].

G(z) =

0.027z4+0.0065z3−0.018z2−2.5×10−4z−9.7×10−7

z5 − 2.41z4 + 1.83z3 − 0.416z2 − 0.0074z − 3.3× 10−5

(43)

We obtain an input/output data set {u0(k), y0(k)} shown in
Fig.3. Here, we considered the case where white noise is
added to the output signal of the plant, and the power spectral

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

u

Time [s]

(a)Output of the plant

0 50 100 150 200 250 300
0

0.5

1

y
Time [s]

(b)Control input

Fig. 3. The input/output signals for the PFC design.

density of white noise is 5.0 × 10−3. Then, from (33), we
designed a second order PFC:H(ρ̄) by using SPR model:

GSPR(z) =
15z − 13

16z − 14
(44)

and obtained

H(z, ρ̄) = 1.515 + 0.125z−1 + 0.0662z−2 (45)

For the system with (45), the design parameters in the
adaptive controller are set by ω = 1, σ = 1.0× 10−3, σi =
1.0 × 10−3, σn = 1.0 × 10−5, Γ = diag[γp, γi, γd], γp =
1, γi = 1 × 10−4, γd = 1 × 10−5, and Γn = 5 × 10−3.
Also, the reference signal yr(k) is given by

yr(k) =
1/500

z − (1− 1/500)
[r(k)], r(k) = 1 (46)

where the notation G(z)[r(k)] implies the output of the
system G(z) with an input r(k). Here, we considered that
controlled systems parameter changed as following.

G(z) =
b0z

4 + b1z
3 + b2z

2 + b3z + b4
z5 + a1z4 + a2z3 + a3z2 + a4z + a5

(47)

b1 =



b1 = 0.0065 t ≤ 3000
b11 = b1 × 1.3 3000 < t ≤ 7000
b12 = b11 × 1.4 7000 < t ≤ 11000
b13 = b12 × 1.3 11000 < t ≤ 15000
b14 = b13 × 1.4 15000 < t ≤ 19000
b15 = b14 × 1.3 19000 < t

(48)

Also, we set the assessment criterion η∗ as 0.7[3]. The
simulation results are shown in Fig.4. We can see that even
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Fig. 4. Simulation results of performance driven PFC design and adaptive
PID controller with adaptive NN.

if the control system have changed, the PFC was redesigned
and the control system keeping the stability.

Fig.5 shows the simulation results by adaptive PID con-
troller with adaptive NN without redesigning the PFC. We
can see that after the 5th change of controlled system, the
system became out of control.

VI. CONCLUSIONS

In this paper, we proposed an adaptive and performance-
driven PID control system design for discrete-time systems
with PFC designed through FRIT approach. Even if the
parameters of the system have changed during the operation
drastically, the proposed system can hold the ASPRness of
the augmented system by redesigning the PFC. In addition,
the effectiveness of the proposed method has confirmed
through a numerical simulation.
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Fig. 5. Simulation results by adaptive PID controller with adaptive NN
without redesigning the PFC.
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