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Abstract— In this paper, dynamic games for a class of
infinite horizon for nonlinear stochastic system governed by
Itô differential equation are investigated. Particularly, Pareto
and Nash strategies are both discussed. After defining the
equilibrium condition, the conditions for the existence of the
strategy sets are given by means of solvability of cross-coupled
Hamilton-Jacobi-Bellman equations (HJBEs). It is shown that
these higher-order approximate strategy sets can be obtained by
computing the recursive algorithm. A simple numerical example
is given to show the reliability and usefulness of the considerable
results.

I. INTRODUCTION

Stochastic dynamic games for large-scale systems have
become a popular research field in the last decade [1],
[2], [3], [4], [5]. From a numerical point of view, similar
problem for a stochastic system governed by Itô differential
equations has been discussed [11], [12]. However, these
existing results on dynamic game were investigated for the
linear case. It is well known that nonlinear systems have
important applications in engineering practice since they
can be captured to represent various plants. Therefore, it
can be observed that nonlinear stochastic dynamic games
of stochastic Itô systems are still open and deserve further
study.

Stochastic H2/H∞ control problems on the generalized
Nash equilibrium strategy have become a popular research
field [6], [7]. Although these results in [6], [7] are very
efficient in theory, a practical issue that remains concerns
the computation of the solutions of Hamilton-Jacobi-Bellman
equations (HJBEs). In [8], an on-line adaptive control al-
gorithm based on policy iteration reinforcement learning
techniques to solve the multiplayer non-zero-sum game with
infinite horizon for linear and nonlinear systems has been
discussed. As a novel concept, the proposed adaptation al-
gorithm is implemented via actor/critic approximated neural
network (NN) for every player. Particularly, the required
parameter can update on-line such that the solution of the
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coupled HJBEs converge. However, stochastic systems gov-
erned by Itô differential equation have not been considered.
On the other hand, stochastic H2/H∞ control problem for
nonlinear systems has been discussed [13]. Although the
obtained result in this literature is very important theory and
despite it being to compute a strategy set, the basic results
for classical games are an open issue that remains to be
considered.

In this paper, dynamic games for a class of infinite horizon
for nonlinear stochastic system governed by Itô differential
equation with multiple decision makers are investigated.
Particularly, Pareto and Nash strategies as a main strategy
are both treated. After establishing the existing conditions
for the strategy set by means of solvability of cross-coupled
Hamilton-Jacobi-Bellman equations (HJBEs), a novel recur-
sive algorithm for solving HJBEs is established as compared
with the existing result [13]. As a result, a higher-order
approximate strategy set can be easily obtained iteratively.
The main contributions of this paper are as follows. First,
in order to establish the condition for the existence of
the strategy set, several important preliminary results are
introduced. After declaring the problem for the Pareto and
Nash games, the strategy sets are derived via HJBE or
HJBEs, respectively. It is newly shown that the Nash strategy
set can be obtained by solving HJBEs iteratively. Compared
with the existing stochastic optimal control problem [10],
the multiple decision making problem is addressed. As a
result, the consensus strategies for cooperative control can
be solved. Finally, a numerical example is demonstrated to
show the usefulness of the proposed strategy set.

Notation: The notations used in this paper are fairly
standard. ∥v∥ denotes the Euclidean norm of a real n-
dimensional vector v. L2

F (ℜ+, ℜq) denotes the space of
non-anticipative stochastic processes y(t) ∈ ℜq with respect
to an increasing σ-algebras Ft-measurable for every t ≥ 0
satisfying E[

∫∞
0

∥y(t)∥2dt] < ∞. E[ · ] stands for the
conditional expectation operator. C2(ℜn) denotes the class
of function twice continuously differential about x ∈ ℜn.
Finally, throughout this paper we have used the notation
∥x(t)∥2R instead of xT (t)Rx(t).

II. PRELIMINARY RESULTS

Consider the N -player nonlinear stochastic system gov-
erned by Itô differential equation defined by

dx(t) =

f(x(t))+ N∑
j=1

gj(x(t))uj(t)

 dt+r(x(t))dw(t),(1)
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where f(0) = 0, r(0) = 0 and x(0) = x0. x(t) ∈ ℜn

represents the system state. ui(t) ∈ L2
F (ℜ+, ℜmi), i =

1, ... , N represent the i-th control inputs.
w(t) ∈ ℜ is a one-dimensional standard Wiener process

defined in the filtered probability space (Ω, F , P, Ft) with
Ft = σ{w(s) : 0 ≤ s ≤ t} [6], [7]. f , gi, h and k
are assumed to be Borel measurable functions of suitable
dimensions such that (1) has a unique strong solution on any
finite interval [0, T ]. Moreover, they are locally Lipschitz.

The cost functionals associated with each player are

Ji(x
0, u1, ... , uN )

= E

∫ ∞

0

∥x(t)∥2Qi
+

N∑
j=1

∥uj(t)∥2Rij

 dt


= E

[∫ ∞

0

ϕi(x(t), u1, ... , uN )dt

]
, (2)

where i = 1, ... , N and Qi ≥ 0, Rii > 0, Rij ≥ 0, i ̸= j
are symmetric matrices.

It should be noted that since the function r(x(t)) depends
only on the state x(t), Ji can be defined without infinity
expectation limT→∞ 1/TE[

∫ T

0
(·)ds].

Some of definitions and useful lemmas with respect to
stochastic Nash game are given.

Definition 1: [8] Feedback control strategies ui(t) =
µi(x), i = 1, ... , N are defined as admissible with respect to
(2) on a set denoted by µi(x), if µi(x) is continuous, µi(x)
stabilizes (1), and (2) is finite ∀x0.

Definition 2: [9] The stochastically uncontrolled system
governed by the Itô’s equation dx(t) = f(x(t))dt +
r(x(t))dw, x(0) = x0, f(0) = r(0) = 0 is called
exponentially mean square stable (EMSS), if there exist some
positive scalars α > 0 and β > 0 such that E[∥x(t)∥2] ≤
βe−αt∥x(0)∥2 for all t > 0 and x(0). Moreover, x ≡
0 of the stochastically uncontrolled system is said to be
asymptotically stable, if limt→∞ E[∥x(t)∥2] = 0.

The following lemma gives a solution of the infinite
horizon stochastic nonlinear optimal regulator problem.

Lemma 1: [6], [7], [10] Consider the following regulator
problem.

min
u

J(u) = E

[∫ ∞

0

(
∥x(t)∥2Q + ∥u(t)∥2R

)
dt

]
, (3a)

s.t. dx(t) = [f(x(t)) + g(x(t))u(t)]dt+r(x(t))dw(t), (3b)

where Q ≥ 0 and R > 0 are symmetric matrices.
If there exists a nonnegative Lyapunov function Vu ∈

C2(ℜn) with

c0∥x∥2 ≤ Vu(x) ≤ c1∥x∥2, c0, c1 > 0 (4)

solving the following HJBE:

∂V T
u

∂x
f + ∥x∥2Q − 1

4
· ∂V

T
u

∂x
gR−1gT

∂Vu

∂x
+

1

2
rT

∂2Vu

∂x2
r = 0,

Vu(0) = 0 (5)

then we have

J ≥ Vu(x
0) (6)

with the optimal control

u(t) = u∗(t) = µ∗(t) = −1

2
R−1gT

∂Vu

∂x
. (7)

Finally, the following result can be easily obtained by
using the existing results [6], [7].

Corollary 1: Consider the following autonomous stochas-
tic nonlinear system:

dx(t) = f̃(x(t))dt+ r̃(x(t))dw(t). (8)

If there exists a nonnegative Lyapunov function Ṽ ∈ C2(ℜn)
with

c̃0∥x∥2 ≤ Ṽ (x) ≤ c̃1∥x∥2, c̃0, c̃1 > 0 (9)

solving the following HJBE:

∂Ṽ T

∂x
f̃ + ∥x∥2 + 1

2
r̃T

∂2Ṽ

∂x2
r̃ = 0, Ṽ (0) = 0 (10)

then we have

J̃ = E

[∫ ∞

0

∥x(t)∥2dt
]
= Ṽ (x0). (11)

III. MAIN RESULTS

In this section, two strategies are discussed. The first one
is Pareto strategy. The other one is Nash strategy.

A. Pareto Strategy

In this section, Pareto strategy set as one of the cooperative
game theory is considered. It is assumed that each player
wants to optimize its own cost described in (2). As the
definition of Pareto efficient solution [16], let us combine
the individual cost functions in (2) into a team cost function
according to the following.

J(x0, u1, ... , uN ) :=

N∑
j=1

ρjJi(x
0, u1, ... , uN )

= E

 N∑
j=1

ρj

∫ ∞

0

(
∥x(t)∥2Qj

+ ∥uj(t)∥2Rjj

)
dt

 ,

N∑
j=1

ρj = 1, 0 < ρi < 1, i = 1, ... , N, (12)

where Rij = 0, i ̸= j.
A Pareto solution is a set (u1, ... , uN ), which minimizes

J(u1, ... , uN ). From the above problem, we obtain the
following necessary optimality conditions.

Theorem 1: Suppose there exist a nonnegative-definite
function V ∈ C2(ℜn) with the properties of

c̄0∥x∥2 ≤ V (x) ≤ c̄1∥x∥2, c̄0, c̄1 > 0. (13)

such that the following HJBE:

∂V T

∂x
f(x(t)) + Q̄ρ −

1

4
· ∂V

T

∂x
S̄ρ

∂V

∂x

+
1

2
rT

∂2V

∂x2
r = 0, V (0) = 0, (14)
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where

S̄ρ :=
N∑
j=1

gj(ρjRjj)
−1gTj , Q̄ρ :=

N∑
j=1

ρj∥x(t)∥2Qj
.

If HJBE (14) admits a strategy set (K1(x), ... ,KN (x)),
then the infinite horizon dynamic game has a Pareto strategy
set

ui(t) = u∗
i (t) = K∗

i (x) = −1

2
(ρiRii)

−1gTi
∂V ∗

∂x
. (15)

Moreover, the closed-loop stochastic system is EMSS and
J∗(x0, u∗

1, ... , u∗
N ) = V (x0).

Proof: By using Itô’s formula, (14) and completing the
squares, the following equation holds.

JT (x
0, u1, ... , uN )

= E

 N∑
j=1

ρj

∫ T

0

(
∥x(t)∥2Qj

+ ∥uj(t)∥2Rjj

)
dt


= E

 N∑
j=1

ρj

∫ T

0

(
∥x(t)∥2Qj

+ ∥uj(t)∥2Rjj

)
dt+ dV (x)


+V (x0)− V (x(T ))

= E

∫ T

0

N∑
j=1

[uj −Kj(x)]
T (ρjRjj)[uj −Kj(x)]dt


+V (x0)− V (x(T )). (16)

Therefore, since limT→∞ E∥x(T )∥ = 0, if ui = Ki(x) =
−1/2(ρiRii)

−1gTi ∂V/∂x, it is easy to see that

J∗(x0, u∗
1, ... , u∗

N )

= E

 N∑
j=1

ρj

∫ ∞

0

(
∥x(t)∥2Qj

+ ∥uj(t)∥2Rjj

)
dt


= V (x0). (17)

Hence, the proof is completed.
As an important application, a linear stochastic system and

quadratic cost functions are considered. Assume that

f(x(t)) = Ax(t), gi(x(t)) = Bix(t), i = 1, ... , N,

r(x(t)) = Cx(t).

Furthermore, let us define the following equation.

V = xT (t)Px(t).

Therefore, Theorem 1 immediately yields the following
Corollary as the linear time invariant case.

Corollary 2: Let us consider the following linear time-
invariant stochastic systems.

dx(t) =

Ax(t)+

N∑
j=1

Bjuj(t)

 dt+Cx(t)dw(t), (18)

with cost functionals (2).

Suppose that the following stochastic algebraic Riccati
equation (SARE) have solutions P ≥ 0.

PA+ATP + CTPC − PSρP +Qρ = 0, (19)

where

Sρ =
N∑
j=1

Bj(ρjRjj)
−1BT

j , Qρ =
N∑
j=1

ρjQj .

Then the infinite horizon Pareto strategy set is given below.

u∗
i (t) = −(ρiRii)

−1BT
i Px(t). (20)

It should be noted that the obtained results are the same
as the existing ones [15].

B. Nash Game

First, the definition of the stochastic Nash equilibrium is
given by exploring the existing result.

Definition 3: Let us consider the nonlinear stochastic
system expressed (1). Find an admissible state feedback
strategies ui(t) = u∗

i (t) ∈ µi(x), u∗
i (0) = 0 such that

Ji(u
∗
1 ... , u∗

N , x0)

≤ Ji(u
∗
1 ... , u∗

i−1, ui, u∗
i+1, ... , u∗

N , x0), (21)
∀ui(t) = µi(x) ∈ ℜmi .

The following result gives the nonlinear Nash strategy set.
Theorem 2: Suppose there exist a nonnegative-definite

function Vi ∈ C2(ℜn) with the properties of

ci0∥x∥2 ≤ Vi(x) ≤ ci1∥x∥2, ci0, ci1 > 0. (22)

such that the following cross-coupled HJBEs:

∂V T
i

∂x
f̂−i(x(t)) + Q̂−i(x)−

1

4
· ∂V

T
i

∂x
giR

−1
ii gTi

∂Vi

∂x

+
1

2
rT

∂2Vi

∂x2
r = 0, Vi(0) = 0, (23)

where

f̂−i(x(t)) = f(x(t)) +
N∑

j=1, i ̸=i

gj(x(t))µj(t),

Q̂−i(x(t)) := ∥x(t)∥2Qi
+

N∑
j=1, j ̸=i

∥µj(x)∥Rij .

If the cross-coupled HJBEs (23) admits a strategy set
(V1, ... , VN , µ1, ... , µN ), then the infinite horizon Nash
game has a strategy set

ui(t) = µ∗
i (t) = −1

2
R−1

ii gTi
∂V ∗

i

∂x
. (24)

Proof: In order to apply Lemma 1, the following
regulator problem is considered.

minimize Ji(ui), (25)

s.t. dx(t) = [f̂−i(x(t)) + gi(x(t))ui(t)]dt+ r(x(t))dw(t),

where

Ji(ui) = Ji(µ
∗
1, ... , µ∗

i−1, µi, µ∗
i+1, ... , µ∗

N , x0)

= E

[∫ ∞

0

[Q̂−i(x(t)) + ∥µi(t)∥2Rii
]dt

]
.

81



If there exists a nonnegative Lyapunov function Vi ∈
C2(ℜn) with (22) solving the HJBE (23). Thus, we have

Ji(µ
∗
1 ... , µ∗

i−1, µi, µ∗
i+1, ... , µ∗

N , x0) ≥ Vi(x
0) (26)

with the optimal strategy (24) can be derived, respectively.
This is the desired result.

Now we assume a linear system and a quadratic cost
function. Assume that

f(x(t)) = Ax(t), gi(x(t)) = Bix(t), i = 1, ... , N,

r(x(t)) = Cx(t).

Thus, we have

Vi = xT (t)Pix(t), i = 1, ... , N.

Therefore, Theorem 2 immediately yields the following
Corollary.

Corollary 3: Let us consider the following linear time-
invariant stochastic systems.

dx(t) =

Ax(t)+
N∑
j=1

Bjuj(t)

 dt+Cx(t)dw(t), (27)

with cost functionals (2).
Suppose that the following cross-coupled stochastic alge-

braic Riccati equations (CSAREs) have solutions Pi ≥ 0,
i = 1, .. , N .

PiA−i+AT
−iPi+CTPiC − PiSiPi+Q−i = 0, (28)

where i = 1, ... , N ,

A−i = A+

N∑
j=1, j ̸=i

SjPj , Si = BiR
−1
ii BT

i ,

Q−i = Qi +

N∑
j=1, j ̸=i

PjGijPj .

Then the infinite horizon Nash strategy set is given below.

ui(t) = µ∗
i = −R−1

ii BT
i Pix(t). (29)

It should be noted that the obtained results are the same
as the existing ones [14].

IV. SUCCESSIVE APPROXIMATION

In order to obtain the strategy sets, HJB or HJBEs should
be solved. It is well known that it is hard and complicated
to solve these equations. When the Pareto strategy set is
computed, the existing result [10] seems to be reliable and
useful. On the other hand, there is no algorithm to calculate
the solution of HJBEs. Hence, the successive approximation
algorithm for solving HJBEs (23) is newly given below.

Step 1. Initialization: After linearizing the stochastic non-
linear differential equation (1) to (27), choose

u
(0)
i (t) = µ

(0)
i (t) = −R−1

ii BT
i Pix(t).

by solving CSAREs (28).

Step 2. For k ≥ 0, solve the following generalized
Hamilton-Jacobi-Bellman Equations (GHJBEs)
with respect to V

(k+1)
i i = 1, ... , N .

∂V
(k+1)T
i

∂x
f̂ (k)(x(t)) + Q̂

(k)
−i

−1

4

N∑
j=1, j ̸=i

∂V
(k+1)T
j

∂x
gjR

−1
jj g

T
j

∂V
(k)
i

∂x

−1

4

N∑
j=1, j ̸=i

∂V
(k)T
i

∂x
gjR

−1
jj g

T
j

∂V
(k+1)
j

∂x

−1

2

N∑
j=1, j ̸=i

∂V
(k+1)T
j

∂x
gjR

−1
jj Rijµ

(k)
j

−1

2

N∑
j=1, j ̸=i

µ
(k)
j RijR

−1
jj g

T
j

∂V
(k+1)
j

∂x

+
1

2
rT

∂2V
(k+1)
i

∂x2
r = 0, V

(k+1)
i (0) = 0, (30)

where

f̂ (k)(x(t)) = f(x(t)) +
N∑
j=1

gj(x(t))µ
(k)
j (t),

Q̂
(k)
−i = ∥x(t)∥2Qi

− 1

2

N∑
j=1, j ̸=i

µ
(k)T
j (t)gTj

∂V
(k)
i

∂x

−1

2

N∑
j=1, j ̸=i

∂V
(k)T
i

∂x
gjµ

(k)
j (t)

+µ
(k)T
i (t)Riiµ

(k)
i (t)

−
N∑

j=1, j ̸=i

µ
(k)T
j (t)Rijµ

(k)
j (t).

Step 3. Compute u
(k+1)
i .

u
(k+1)
i = µ

(k+1)∗
i = −1

2
R−1

ii gTi
∂V

(k+1)
i

∂x
. (31)

Step 4. Increment k → k + 1 and go to Step 2, until the
desired precision is attained simultaneously.

It should be noted that it is still hard to solve the reduced-
order HJBEs. Therefore, in order to overcome this drawback,
the existing method based on the combination Galerkin
spectral method and Chebyshev polynomials [13] would be
helpful and informative.

If the linear case is considered, Newton’s method is given
below.

P
(k+1)
i A

(k)
i +A

(k)T
i P

(k+1)
i +Q

(k)
−i

−
N∑

j=1, j ̸=i

P
(k+1)
j SjP

(k)
i −

N∑
j=1, j ̸=i

P
(k)
i SjP

(k+1)
j

+

N∑
j=1, j ̸=i

[
P

(k)
j GijP

(k+1)
j + P

(k+1)
j GijP

(k)
j

]
+CTP

(k+1)
i C = 0, (32)
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where i = 1, ... , N ,

A
(k)
i = A−

N∑
j=1

SjP
(k)
j ,

Q
(k)
−i = Qi +

N∑
j=1, j ̸=i

P
(k)
j SjP

(k)
i +

N∑
j=1, j ̸=i

P
(k)
i SjP

(k)
j

+P
(k)
i SiP

(k)
i −

N∑
j=1, j ̸=i

P
(k)
j GijP

(k)
j .

It should be noted that the above mentioned algorithm is the
same as the existing one [14] for the linear case.

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed
algorithm, a simple scalar example is given. The system and
the cost functionals are given below.

dx(t) =

[
−2x(t)− 1

3
x3 + u1(t) + 2u2(t)

]
dt

+0.1x(t)dw(t), (33a)

J1(x
0, u1, u2) = E

[∫ ∞

0

(2∥x(t)∥2 + ∥u1(t)∥2)dt
]
,(33b)

J2(x
0, u1, u2) = E

[∫ ∞

0

(3∥x(t)∥2 + ∥u2(t)∥2)dt
]
,(33c)

where R12 = R21 = 0.
First, in order to obtain the initial strategies, the linear

model of the stochastic system is established. The lineariza-
tion model for the neighborhood x(t) = 0 as the equilibrium
point is given below.

dx̄(t) = [−2x̄(t) + ū1(t) + 2ū2(t)]dt+ 0.1x̄(t)dw(t).

Therefore, the initial strategy set is given below by using of
Newton’s method (32).

u
(0)
1 (t) = µ

(0)
1 (t) = −0.24982x(t), (34a)

u
(0)
2 (t) = µ

(0)
2 (t) = −0.94152x(t). (34b)

On the other hand, using the proposed algorithm in section
IV, the higher-order Nash strategy set is computed. Setting
k = 0 at (30), the following equations can be obtained.

∂V
(1)
1

∂x

(
−2x− 1

3
x3 +

1

2
µ
(0)
1 + 2µ

(0)
2

)
+2x2 + 4

∂V
(1)
2

∂x
µ
(0)
1 +

x2

200
· ∂

2V
(1)
1

∂x2
+ 4µ

(0)
1 µ

(0)
2 = 0,

V
(1)
1 := α1x

2, α1 > 0,

∂V
(1)
2

∂x

(
−2x− 1

3
x3 + µ

(0)
1 + µ

(0)
2

)
+3x2 +

1

2
· ∂V

(1)
1

∂x
µ
(0)
2 +

x2

200
· ∂

2V
(1)
2

∂x2
+ µ

(0)
1 µ

(0)
2 = 0,

V
(1)
2 := α2x

2, α2 > 0.

Finally, by continuing the same procedure, the following
high-order approximate strategy set are calculated.

u∗
1(t) = −0.24968x(t) +O(x2), (35a)

u∗
2(t) = −0.94008x(t) +O(x2). (35b)

VI. CONCLUSIONS
Infinite horizon dynamic games for nonlinear stochastic

system have been investigated. Particularly, Pareto and Nash
strategy set were treated. It has been shown that the existing
conditions were formulated by means of solvability of HJBE
and HJBEs, respectively. Furthermore, these strategy sets can
be obtained by solving HJBE and HJBEs. As compared with
the existing result, a new recursive algorithm for solving
HJBEs was given. As a result, the higher-order approximate
strategy set can be obtained numerically. Finally, a numerical
example was evaluated to validate and show the reliability
of the proposed approach.

It is expected that the convergence proof of the proposed
algorithm in section IV should be considered. Moreover, the
avoidance of difficulty for carrying out of this algorithm
should also be investigated. As other future investigations,
the cost degradation is more interesting for using the ap-
proximate strategy set in the practical situation.

Although this paper investigates infinite horizon stochastic
case, finite horizon case is more realistic. In this case, the
condition that the closed-loop system is EMSS is not needed.
Furthermore, in order to obtain the optimal control law of
the finite horizon case, the algorithm that consists of the
two essential steps in Four Step Scheme [17] for solving
HJBE was developed. This literature would give another
approximate strategy set. On the other hand, in order to
adopt the difference between the approximate strategy and
the optimal one, the hybrid controller via the neural networks
[18] are suitable. The above mentioned these issues will be
addressed in future investigations.
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and centralized solutions to consensus problems via mean field control
theory, IEEE Trans. Automatic Control, vol. 58, no. 3, 2013 (to
appear).

[3] M. Nourian, P. E. Caines, R. P. Malhamé and M. Huang, Mean
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