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Abstract— Robust optimal temperature trajectories for 

seeded batch crystallization processes under size-dependent 

crystallization kinetics are proposed, which minimize the 

amount of fine crystals. First, a deterministic optimal 

temperature-swing trajectory is calculated by Particle Swarm 

Optimization (PSO). Furthermore, robust trajectories are 

proposed by considering parametric perturbations in the 

process model and initial conditions. Two robust versions of 

PSO, named AMPSO and WMPSO, are introduced to cope with 

the uncertain optimization problem. The result of Monte Carlo 

simulation demonstrates that the optimal trajectories are 

capable of producing fine-minimized crystals with high 

robustness against initial operating condition changes. 

I. INTRODUCTION 

Batch and semi-batch operation is important and popular 
mode of operation to produce high quality and value-added 
product in the food, chemical, fine chemical, and 
pharmaceutical industries. Batch and semi-batch processes are 
preferred because of their better flexibility and smaller capital 
cost. Although the economics have not been the dominant 
factor in batch and semi-batch production and there have been 
only a few attempts in the industry to optimize their operations 
through mathematical modeling and optimization techniques, 
competition is clearly making the cost factor an important 
issue and the potential gain of applying these techniques could 
be significant [1, 2]. 

Crystallization is a common but important unit operation 
to produce solid phase products through separation and 
purification. In batch crystallization, crystal size distribution 
of final products is desired to be optimized, since it always 
significantly influences the quality of crystalline product and 
the efficiency of downstream process operations such as 
filtration, washing and drying.  

Traditionally, the optimization of seeded batch 
crystallization processes has been performed for several 
surrogate objective functions based on some properties of 
crystal size distribution, although it is difficult to relate the 
downstream processing cost directly to the size distribution.  
According to the previous work of Ward [3], the optimization 
objective of the crystal size distribution at the end of batch was 
summarized into four common categories: (1) minimize the 
“amount” of nucleus-grown crystals; (2) maximize the 
“average size” of the total crystals; (3) minimize the “variation 
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in size” of the total crystals; (4) grow the seed crystals as 
“large” as possible. 

Besides the single objective problem, Sarkar et al. [4] 
investigated various constrained multi-objective optimization 
problems which are related to the quality of final crystal size 
distribution by applying an adapted GA (Genetic Algorithm) 
code. Another work by Nagy [5] solved a single nucleation 
kinetic uncertainty optimization problem by utilizing designed 
shapes of both monomodal and bimodal crystal size 
distribution as the optimization objective for batch 
crystallization. However, it has been found that some 
optimized temperature profiles exhibit severe robustness 
problems when there are changes in operating conditions or 
crystallization kinetics [6, 7].  

Traditional discussion on temperature operation is focused 
on monotonically decreasing crystallizer temperature, which 
means no temperature increase is allowed during batch 
process. An experimental study conducted by Barkar et al. [8] 
demonstrated that temperature rise operation is capable of 
improving final crystal size distribution. In terms of 
simulation works, Seki et al. [9] proposed feedback control 
schemes based on the second moment measurement 
incorporating temperature rise operation. Moreover, under 
size-dependent crystallization kinetics, the temperature swing 
operation is known to be particularly effective for improving 
the size distribution [10, 11].  

In this work, optimal temperature operation to minimize 
fine part of final crystal size distribution for seeded batch 
crystallization processes is proposed and investigated through 
simulation studies. Deterministic and robust optimal 
temperature trajectories, which incorporate both crystal 
growth and dissolution by temperature swings, are obtained 
through a potassium nitrate/water system as an example. By 
considering it as an uncertain optimization design 
problem, PSO (Particle Swarm Optimization) and its robust 
versions have been adapted to find the optimal 
trajectories. The Monte Carlo simulation result demonstrates 
that the PSO and its robust variants are capable of generating 
reliable and robust optimal solutions to minimize fines for the 
batch crystallization model under both deterministic and 
uncertain environments.  

The remaining of this paper is organized as follows: in 
Section 2 we introduce the mathematical model for seeded 
batch cooling crystallization. In Section 3 a brief overview of 
uncertain optimization problem, PSO and the proposed robust 
variants is presented, while results of numerical optimization 
and analysis of optimized profiles are given in Section 4. 
Finally, in Section 5 we give some concluding remarks of this 
work. 
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II. MATHEMATICAL MODEL OF SEEDED BATCH 

CRYSTALLIZATION 

A population balance model for crystallization processes 
with the characteristic length L can be described as the 
following partial differential equation: 

  (   )

  
 

  (   )  (   )

  
                      ( ) 

subject to the initial and boundary conditions: 

 (   )                                              ( ) 
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 ( )

 (   )
                                  ( ) 

where  (   )  is the population density function,  (   ) 
represents size-dependent growth and dissolution rate of 
crystals.    represents initial population density of seed 
crystals charged at the beginning of batch.  ( ) represents the 
nucleation rate. Secondary mechanism nucleation is assumed 
and the nuclei are considered arbitrarily small. The i-th 
moment    of the population density function   is given by: 

  ( )  ∫    (   )  
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Material balance for the solute concentration  ( ) and the 
relative supersaturation  ( ) are defined as: 

 ( )   ( )      (  ( )    ( ))                ( ) 
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                                ( ) 

where    is the crystal density,    is the volumetric shape 
factor, and    is the third moment.     ( )  represents the 
saturation concentration at temperature  and   is a function 
of operating time  . 

Since crystal dissolution is incorporated, the nucleation 
rate and growth rate are described as: 

 ( )      ( ) ( )                               ( ) 

 (   )  {
   ( ) (     )         ( )   

   ( )(     )           ( )     
       ( ) 

 

A potassium nitrate/water system is investigated as a case 
study [13], and details of parameters are shown in Table I.  
The parameters concerning the dissolution and size 
dependency are hypothetical.  Note that the parameters 
concerning crystal growth and dissolution are determined as 
           and           to ensure larger crystals 

grow faster and smaller crystals dissolve faster.  

Generally, (1) can be solved by the method of moments. 
However, the population balance equation is directly solved in 
this study, since it is difficult to incorporate crystal 
disappearance due to dissolution into the method of moments. 
To solve the population balance numerically, the MATLAB 
code provided by Ward et al. [12], which is based on the space 
time conservation element and solution element (CE/SE) 
method, is modified to account for crystal disappearance due 
to dissolution. 

TABLE I.  PARAMETER VALUES OF  POTASSIUM NITRATE/WATER 

CRYSTALLIZATION MODEL 

Parameter  Value 

Nucleation parameter     
(#/s/g-water) 

4.64      

Nucleation parameter   1.78 

Growth parameter   (m/s) 1.1612       

Growth parameter   1.32 

Dissolution parameter   (m/s) 1.16       

Density   (kg/  ) 2.11      

Volumetric shape factor    1 

Growth parameter    1     

Growth parameter    0.5 

Dissolution parameter    1     

Dissolution parameter     1 

Solubility  ( )(g/g-solve) 0.129   0.00588   0.000172   

 

III. UNCERTAIN OPTIMIZATION PROBLEM AND PSO 

ALGORITHM 

A. Uncertain Optimization Problem 

So far, most studies on engineering optimal design 
problems have been mainly focused on locating the global 
optima using deterministic models. However, in many 
real-world engineering optimization problems, uncertainties 
are often present. If the solution is very sensitive to small 
perturbation either in the design variables or operating 
conditions, it often leads to undesirable final performance. It is 
considered necessary to take uncertainties into account during 
optimization.  

A constrained optimization problem is formed as follow:  

                           Maximize:     ( )                                          ( )           

Subject to:                                 (  )                  

where  ( ) is a fitness function,      and     are the lower 

and upper bounds of design variable vector  . In general, it is 
possible to classify uncertainties in an optimization problem 
into three main categories: (1) intrinsic uncertainties from 
fitness function; (2) uncertainties in design variables; (3) 
uncertainties from fluctuations in operating conditions [17].  

In seeded batch crystallization processes, the initial 
conditions always change from batch to batch and have 
significant effects on the final quality of product crystals, 
hence we may regard this uncertain problem of batch 
crystallization as Category (3), which can be formed as: 

                        Maximize:      ( )   (     )               (  ) 

where                is the nominal value vector of the 
operating parameters such as initial solute concentration, and 
  denotes a random vector representing the uncertainties. 

B. Particle Swarm Optimization  

To solve many complex engineering design problems, 
PSO has been widely studied as an evolutionary 
computational algorithm [17]. In the standard PSO introduced 
by Kennedy and Eberhart [16], many individuals move around 
in a D-dimensional research space, each representing a 
possible solution to a numerical problem, and each individual 
memorizes its own position and velocity                
and               , as well as the spot       where the 
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individual has acquired the best fitness value. Furthermore, all 
of them share the best-fitness spot information       of the 
whole swarm. 

At k-th iteration, the velocity of each individual is updated 
according to their best encountered position and the swarm 
best-fitness spot in the following way: 

             (         )      (        ) (  ) 

where    and    are the acceleration constants which usually 
are set as 2,    and    are independent random numbers from 0 
to 1.   is the inertia weight showing the impact of previous 
velocities on the next move. A suitable value   is important to 
balance the global and local exploration abilities. Therefore, a 
general and reliable strategy used here suggests linearly 
decreasing   during the iteration. Furthermore, if the velocity 
exceeds a prefixed limit, another restriction      is used to 
keep the individuals inside the search space. 

Meantime, the position is updated according to the new 
individual velocity by generation and expressed by the 
equation: 

                                               (  ) 

 

C. PSO for Uncertain Optimization 

To solve the uncertain optimization problem for our batch 
crystallization process, a multiple-evaluation method has been 
proposed and combined with evolutionary computational 
approaches. Basic idea of this approach is replacing fitness 
value by the average or worst case value among   new 
intermediate model evaluations as perceived fitness which 
reflects several random vector uncertainties   
             in the original model [14, 17].  

According to AVS (Average Value Scheme), the 
perceived fitness is calculated by the average fitness of all   
perturbed models, i.e.           (      )  (    
  )    (      ) . On the other hand, for WCS (Worst 
Case Scheme), the perceived fitness is chosen as the worst 
among   perturbed evaluations, i.e.         (    
  )  (      )    (      ) . It is worth noting that the 
worst case would represent the minimum for a maximization 
problem or maximum on a minimization problem.    

It is possible to adapt multiple-evaluation method into 
PSO algorithm. In this work, we incorporated both AVS and 
WCS into a standard PSO code and proposed two robust 
versions of multiple-evaluating PSO, AMPSO and WMPSO, 
to cope with the uncertain optimization problem in seeded 
batch crystallization. The procedure is shown as follows: 

Step 1:  Initialize each swarm individual by random position   

and velocity  . 

Step 2:  Evaluate the perceived fitness values of all particles 

through   multiple-evaluations according to AVS or 

WCS then initialize       of each individual and 

the      . 

Step 3:  Update the velocity   and position   of each 

individual according to (12) and (13). 

Step 4:  Update the perceived fitness values of all particles 

according to AVS or WCS. 

Step 5:  Update       of each particle. Determine the current 

best individual which performs the best perceived 

fitness value then update the current      .  

Step 6:  If the stopping criterion is met, then output       and 

its objective fitness value; otherwise go back to Step 3. 

 

IV. OPTIMIZATION PROBLEM SETTING FOR SEEDED BATCH 

CRYSTALLIZATION 

A. Deterministic Optimization Problem 

In order to repress the generation of fine crystals at the end 

of batch, the optimization objective is considered to minimize 

the fine part, where crystal size is less than 500  , of the final 

third moment crystal size distribution. The deterministic 

optimization problem can be expressed as: 

Minimize:             
( )                                                      (  ) 

Subject to:          (  )                         (  )  

  
     (  )                                           (  ) 

       ( )   ⁄                                   (  ) 

 (     )   (    )                                   (  ) 

where     and     are the lower and upper temperature 

limits, and    
   is the lower limit of seeding temperature. 

From       to the end of batch     , crystallizer temperature is 
kept constant as     to ensure that the system is not 

supersaturated at the end of the batch.       and      are 
lower and upper rates of temperature change. To simplify the 
infinite dimensional nonlinear problem to a finite dimensional 
problem,   temperature changing points are determined as the 
design variables, while the entire profile is defined as 
    (  )  (  )    (    )  (     )  (    ) . 

The use of sieved seed crystals is assumed and its size 
distribution is assumed to be parabolic with the mean size    
and width   as shown in Fig.1 and it is used as the initial 
condition F0. Details of parameter settings in this problem are 
listed in Table II.  
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Figure 1. Size distribution of the seed crystals. 
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TABLE II.  PARAMETER SETTINGS OF OPTIMIZATION PROBLEM 

Parameter Value 

Lower bound of temperature     ( ) 18 

Upper bound of temperature     ( ) 30.5 

Lower bound of initial temperature   
    ( ) 27 

Saturation temperature of the feed       ( ) 30 

Final temperature      ( ) 20 

Lower bound of temperature changing rate  

    (  min) 
-0.5 

Upper bound of temperature changing rate 

      (  min) 
0.5 

Cooling duration       (min) 120 

Batch time        (min) 150 

  temperature point parameter 15 

Seed loading ratio    (%) 2.0 

Average seed size    (  ) 200 

Distribution width   (  ) 50 

   

B. Uncertain Optimization Problem 

Since the product quality by the optimal trajectory can be 
very sensitive to small errors and fluctuations in the initial 
conditions of a batch, a robust optimal profile which has high 
tolerance is needed.  

An uncertain optimization problem has been formed, by 
considering the initial operating perturbations. According to 
AVS and WCS, objective functions of both average and worst 
fitness evaluation are given as follows: 

Minimize:       
 

 
∑          

(      )
 
                      (  ) 

Minimize:                    
(      )                      (  ) 

where    (        ) represents parametric perturbations 
of batch crystallization processes. The assumed uncertainties 
and their magnitudes are shown in Table III, which are all 
assumed as under uniform distribution.   is the number of 
samples evaluated for one solution.  

TABLE III.  ASSUMED MODEL FLUCTUATIONS AND ERRORS 

Parameter name Magnitude (%) 

Growth rate parameter     10 

Dissolution rate parameter     10 

Nucleation rate parameter     10 

Solubility    2 

Initial feed concentration  2 

Average size of the seed crystals  10 

a.  2% of   (     ) is added as a bias to the solubility curve. 

V. OPTIMIZATION RESULTS  

A MATLAB MEX-file is used to solve the population 
balance equation. For the deterministic and uncertain 
optimization calculations, the particle swarm population is 
preset as 40, and it is determined as a general set that 
parameters are        2 and the inertia weight   decreases 
linearly from 0.6 to 0.4 during the first 3500 iterations then 
keeps constant at 0.4 for 500 more iterations since this strategy 
proved to be able to give PSO algorithm better exploration and 
exploitation abilities to solve the optimization problem.  

A. Deterministic Optimal Temperature Trajectory 

Deterministic optimization simulation has been conducted 
for the nominal process parameters in Table 1. Figure 2 shows 
the obtained deterministic optimal temperature trajectory 
calculated by the standard PSO algorithm. Figure 3 shows the 
results of crystal volume distribution at the end time of the 
batch subject to the optimal temperature swing profile. The 
fitness value, the final third moment of the crystal size 
distribution whose size is smaller than 500  , is minimized to 
0.0437   , and an ideal monomodal crystal volume 
distribution of products is obtained, which implies that by 
using the optimal temperature swing trajectory almost all the 
final product crystals have grown from the seed crystals.   

Figure 4 shows the time evolution of the third moment 
value of crystals whose size is less than 500     demonstrating 
how fine crystals are successfully eliminated by the 
temperature-swing operation. Figure 5 shows the total third 
moment value during the batch. The plot shows that although 
fine crystals dissolve because of the temperature rise, the 
entire crystal volume is enlarged to high-quality final product.          
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Figure 2. Deterministic optimal temperature trajectory 
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Figure 3. Final crystal volume distribution calculated by the 

deterministic optimal trajectory 
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B. Robust Optimal Temperature Trajectory 

Crystal size distribution of final product is sensitive to 
initial operating perturbations. Hence, to improve robust 
performance of batch operations, proposed AMPSO and 
WMPSO are applied to the uncertain problem subject to the 
assumed parametric perturbations given in Table III. For both 
AVS and WCS cases, multiple-time   in (19) and (20) are set 
to     and 10. Since calculation of the population balance 
model through evolutionary algorithm is extremely 
time-consuming, here we use the Parallel Computing Toolbox 
in MATLAB to shorten the computing time. However, it is 
still computationally expensive, e.g. it takes about 120h 
solving AVS (    ) case by incorporating 12 parallel 
workers on Intel Core i7-3930k (OC to 4GHz). Figure 6 
compares robust optimal trajectories through AMPSO and 
WMPSO.  

It is worth noting that the worst case of seeded batch 
crystallization process is complete dissolution of crystals 
during temperature swing operation; all seed-growth crystals 

disappear and intractable primary nucleation should appear, 
which usually leads to extremely low quality product. In this 
study, when the complete dissolution occurred, the simulation 
calculation was terminated since primary nucleation is not 
modeled. 

Figure 7 compares the robustness of both deterministic and 
robust optimal trajectories by 50000-case Monte Carlo 
experiments. The Latin hypercube sampling method is used to 
generate the random uncertainties. The abscissa represents the 
base 10 logarithm value of the third moment of crystals which 

are smaller than 500m. Comparing with deterministic result, 
AMPSO and WMPSO results showed high-tolerance towards 
initial process perturbations. The best improvement by robust 
trajectories is that the worst case of complete crystal 
dissolution is completely avoided while it occurs 2781 times 
under the deterministic trajectory. Statistical results are given 
in Table 4 which shows AMPSO solutions can produce 
smaller amounts of fines with higher possibility than WMPSO 
solutions.  

Surprisingly, the performances by m=3 are already 
comparable with those by m=10 for both AMPSO and 
WMPSO. AMPSO(   ) appears to be the most appropriate 
method in our case studies  because it is the least 
time-consuming profile to calculate and it yields the smallest 
mean value of final fine crystal. 

VI. CONCLUSION 

This paper describes an approach to optimize seeded batch 
crystallizer operations with size-dependent crystallization 
kinetics. Temperature-swing operation which minimizes the 
amount of fine crystals is obtained through optimization 
calculations.  

Since final properties of crystals are very sensitive to initial 
operating condition changes such as shifts in solubility and 
feed concentration, uncertain optimization problems are also 
considered. After investigating the deterministic optimal 
trajectory, robust optimal profiles are calculated through 
AMPSO and WMPSO, and their performances are compared. 
The temperature trajectories obtained by solving the 
uncertain optimization problems are found to be insensitive 
against operating condition perturbations and capable of 
eliminating the worst case of complete crystal dissolution, 
which is not possible with the deterministic optimal 
trajectory.  
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TABLE IV.  STATISTICAL RESULTS OF MONTO CARLO EXPERIMENTS 

Trajectory Mean 

value 

Standard 

deviation 

Worst cases 

occurred time 

PSO   -0.7669 1.5756 2781 

AMPSO(  3) -0.5873 1.0160 0 

AMPSO(  10) -0.3455 0.9546 0 

WMPSO(  3) 0.3836 0.8340 0 

WMPSO(  10) 0.2272 0.7080 0 

a. Analysis of deterministic PSO trajectory does not include the crystal complete dissolution cases. 
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Figure 4. Time evolution of the third moment value for crystals 

smaller than 500 m. 

 

Figure 5. Time evolution of the third moment value 

 for all-size crystals 
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Figure 1.  Robustness evluation of proposed optimal trajectories. Ten  
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Figure 6. Robust optimal temperature profiles 
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