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Abstract— In this paper, we propose a decentralized variable
gain robust controller which achieves not only robust stability
but also satisfactory transient performance for a class of
uncertain large-scale interconnected systems with state delays.
The proposed decentralized robust controller consists of a fixed
feedback gain controller and a variable one tuned by parameter
adjustment laws. In this paper, it is shown that sufficient
conditions for the existence of the proposed decentralized
variable gain robust control system are given in terms of LMIs.
Finally, a simple illustrative example is shown.

I. INTRODUCTION

Robust controllers for uncertain systems have been the
focus of much attention in feedback control. A great many
results have been obtained on the problems of robust stability
analysis and robust stabilization (e.g. [1] and references
therein). Besides, several variable gain robust state feedback
controllers for uncertain systems have also been suggested
(e.g. [2], [3]). In the work of [2], a robust controller with
adaptation mechanism has been presented and the adaptive
robust controller is tuned on-line based on the information
about parameter uncertainties. Additionally, Oya and Hagino
have proposed robust controllers with adaptive compensation
inputs which acieve not only robust stability but also satis-
factory transient response[3].

On the other hand, due to the complication of systems
because of the rapid development of modern industry, de-
centralized control problems for large-scale interconnected
systems have been widely studied[4]. Thus decentralized ro-
bust control of uncertain large-scale interconnected systems
has also attracted the attention of many researchers (e.g
[5], [6], [7]). In Mao and Lin[6] for large-scale intercon-
nected systems with unmodelled interaction, the aggregative
derivation are tracked by using a model following technique
with on-line improvement, and a sufficient condition for
which the overall system when controlled by the com-
pletely decentralized control is asymptotically stable has
been established. Gong[7] has proposed decentralized robust
controllers which guarantee robust stability with prescribed
degree of exponential convergence. Mukaidani et al.[8], [9]
have also proposed decentralized guaranteed cost controllers
for uncertain large-scale interconnected systems. In addition,
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we have suggested a decentralized variable gain robust
controller which achieves not only robust stability but also
satisfactory transient behavior for a class of uncertain large-
scale interconnected systems[10].

In this paper, on the basis of the existing result[10], we
propose a decentralized variable gain robust controller for
a class of uncertain large-scale interconnected systems with
state delays. For the uncertain large-scale interconnected sys-
tem with state delays, uncertainties and interactions satisfy
the matching condition. The proposed decentralized robust
control input is composed of a state feedback with a fixed
feedback gain matrix designed by using nominal subsystem
and an error signal feedback with a fixed compensation
gain matrix and a variable one determined by a parameter
adjustment law. This paper is organized as follows. notations
and useful lemmas which are used in this paper are shown
in Section II, and in Section III, the class of uncertain large-
scale interconnected systems with state delays which are
considered in this paper is introduced. The main results are
presented in Section IV, i.e. LMI-based sufficient conditions
for the existence of the proposed decentralized variable gain
robust controller are presented. Finally, a simple illustrative
example is included.

II. NOTATIONS AND LEMMAS

In this section, we introduce notations, and useful and
well-known lemmas (see [11], [12] for details) which are
used in this paper as well as the existing work[13].

In the paper, the following notations are used. For a
matrix X , the inverse of matrix X and the transpose of
one are denoted by X−1 and X T , respectively. Additionally
He{X} and In mean X + X T and n-dimensional identity
matrix, respectively, and the notation diag (X1, · · · ,XM)
represents a block diagonal matrix composed of matrices
Xi for i = 1, · · · ,M. For real symmetric matrices X and
Y , X > Y (resp. X ≥ Y) means that X − Y is positive
(resp. nonnegative) definite matrix. For a vector α ∈ R

n,
||α|| denotes standard Euclidian norm and for a matrix X ,

||X || represents its induced norm. The symbols “
4
=” and “?”

mean equality by definition and symmetric blocks in matrix
inequalities, respectively.

Lemma 1: For arbitrary vectors α and β and the matrices
X and Y which have appropriate dimensions, the following
inequality holds.

2αTX∆(t)Yβ ≤ 2
∥

∥X T α
∥

∥

∥

∥Yβ
∥

∥

where ∆(t) ∈ R
s×t is a time-varying matrix and it satisfies

the relation
∥

∥∆(t)
∥

∥ ≤ 1.0.
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d

dt
xi(t) = Aii(t)xi(t) +

N
∑

j=1

j 6=i

Aij(t)xj(t) +

N
∑

j=1

Hij(t)xj(t − hij) + Biui(t) (1)

d

dt
ei(t) = (AKi

+ BiFi) ei(t) + Bi∆ii(t)Lixi(t) + Bi

N
∑

j=1

j 6=i

(Dij + ∆ij(t)Mij)xj(t)

+ Bi

N
∑

j=1

(Eij + ∆hij(t)Nij)xj(t − hij) + BiGi(xi, ei, t)ei(t) (8)

Lemma 2: (Schur complement) For a given constant real
symmetric matrix Ξ, the following items are equivalent.

(i) Ξ =

(

Ξ11 Ξ12

ΞT
12 Ξ22

)

> 0

(ii) Ξ11 > 0 and Ξ22 − ΞT
12Ξ

−1

11 Ξ12 > 0
(iii) Ξ22 > 0 and Ξ11 − Ξ12Ξ

−1

22 ΞT
12 > 0

III. PROBLEM FORMULATION

Consider the uncertain large-scale interconnected system
with state delays composed of N subsystems described as
(1). In (1), xi(t) ∈ R

ni and ui(t) ∈ R
mi (i = 1, · · · , N )

are the vectors of the state and the control input for the i-th
subsystem, respectively and x(t) =

(

xT
1 (t), · · · , xT

N (t)
)T

is
the state of the overall system. The matrices Aii(t), Aij(t)
and Hij(t) are given by

Aii(t) = Aii + Bi∆ii(t)Lii

Aij(t) = BiDij + Bi∆ij(t)Mij

Hij(t) = BiEij + Bi∆hij
(t)Nij

(2)

i.e. the uncertainties and the interaction terms satisfy the
matching condition. In (2), the matrices Aii ∈ R

ni×ni ,
Aij ∈ R

ni×nj and Bi ∈ R
ni×mi denote the nominal system

matrix and the nominal input one. Additionally, the matrices
Lii, Dij , Mij , Eij and Nij with appropriate dimensions
mean the structure of uncertainties, interactions and state
delays. Besides, matrices ∆ii(t) ∈ R

mi×pi , ∆ij(t) ∈
R

mi×qij and ∆hij
(t) ∈ R

mi×rij denote unknown parameters
satisfying the relations ‖∆ii(t)‖ ≤ 1.0 , ‖∆ij(t)‖ ≤ 1.0 and
‖∆hij

(t)‖ ≤ 1.0 respectively.
Now, the nominal subsystem which is obtained by ignoring

uncertainties and interactions in (1), is shown as

d

dt
xi(t) = Aiixi(t) + Biui(t). (3)

In (3), xi(t) ∈ R
ni and ui(t) ∈ R

mi are the vectors of the
state and the control input for the i-th nominal subsystem,
respectively.

First of all, we adopt the standard linear quadratic control
problem for the i-th nominal subsystem of (3) so as to
generate the desired trajectory in time response for the
uncertain i-th subsystem of (1) systematically. Note that
some other design method for deriving the desirable response
can also be adopted (e.g. pole placement). It is widely known

that the optimal control input for the i-th nominal subsystem
of (3) can be obtained as

ui(t) = Kixi(t)

Ki
4
=−R−1

i BT
i Xi

(4)

In (4), Xi ∈ R
ni×ni is a symmetric positive define matrix

which satisfies the algebraic Riccati equation

He

{

AT
iiXi

}

−XiBiR
−1

i BT
i Xi + Qi = 0 (5)

where the weighting matrices Qi ∈ R
ni×ni and Ri ∈

R
mi×mi are positive definite and are determined in advance

so that the desirable transient behavior is achieved.
Based on the existing result[3], let us introduce error

vectors ei(t)
4
= xi(t)−xi(t). Besides, using the feedbackgain

matrix Ki ∈ R
mi×ni of (4) for the i-th subsystem of (1),

we consider the following control input.

ui(t)
4
= Kixi(t) + vi(t) (6)

where vi(t) ∈ R
mi is the compensation input[3] defined as

vi(t)
4
=Fiei(t) + Gi(xi, ei, t)ei(t). (7)

In (7), Fi ∈ R
mi×ni and Gi(xi, ei, t) ∈ R

mi×ni are the fixed
compensation gain matrix and the variable one for the i-th
subsystem of (1). From (1) – (3), (6) and (7), the uncertain
error subsystem of (8) is derived. In (8), AKi

∈ R
ni×ni is

the stable matrix described as AKi
= Aii + BiKi.

From the above discussion, our design objective in this
paper is to determine the decentralized variable gain robust
control input of (6) such that the resultant overall system
achieves not only robust stability but also satisfactory tran-
sient behavior. That is to design the fixed compensation gain
matrix Fi ∈ R

mi×ni and the variable one Gi(xi, ei, t) ∈
R

mi×ni such that the overall error system composed of N

error subsystems of (8) is asymptotically stable.

IV. DECENTRALIZED VARIABLE GAIN CONTROLLERS

The following theorem shows a sufficient condition for the
existence of the proposed decentralized control system.

Theorem 1: Consider the uncertain error subsystem of
(8) and the control input of (6).

If the LMIs of (9) – (12) are feasible, by using symmetric
positive definite matrices Yi ∈ R

ni×ni , Yij ∈ R
ni×ni ,
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Gi(xi, ei, t)
4
=







−
‖BT

i Piei(t)‖‖Liixi(t)‖ + 2 {εi(N − 1) + δiN} ‖BT
i Piei(t)‖

2

‖BT
i Piei(t)‖2

BT
i Pi

Gi(xi, ei, tε)
(13)

Λi (Yi) =
(

YiD
T
1i YiM

T
1i · · · YiD

T
i−1 i YiM

T
i−1 i YiD

T
i+1 i YiM

T
i+1 i · · · YiD

T
Ni YiM

T
Ni

)

(14)

Θ(Yi) =
(

Yi Yi · · · Yi

)

(15)

Ω(Yi) = diag
(

−Y1i −Y2i · · · −YNi

)

(16)

Ψi =
(

DT
1i MT

1i · · · DT
i−1 i MT

i−1 i DT
i+1 i MT

i+1 i · · · DT
Ni MT

Ni

)

(17)

Γi (εi) = diag
(

−ε1Im1
, ε1Iq1i

, · · · , εi−1Imi−1
, εi−1Iqi−1i

, εi+1Imi+1
, εiIqi+1i

, · · · , εNImN
, εNIqNi

)

(18)
d

dt
Vei

(t) = eT
i (t)

[

He

{

(AKi
+ BiFi)

T Pi

}]

ei(t) + 2eT
i (t)PiBi∆ii(t)Lixi(t) + 2eT

i (t)PiBiGi(xi, ei, t)ei(t)

+ 2eT
i (t)PiBi

N
∑

j=1

j 6=i

(Dij + ∆ij(t)Mij) (ej(t) + xj(t))

+ 2eT
i (t)PiBi

N
∑

j=1

(

Eij + ∆hij
(t)Nij

)

(ej(t − hij) + xj(t − hij))

+
N

∑

j=1

(

eT
j (t)Pijej(t) − eT

j (t − hij)Pijej(t − hij)
)

≤ eT
i (t)

[

He

{

(AKi
+ BiFi)

T Pi

}]

ei(t)

+ 2‖BT
i Piei(t)‖‖Lixi(t)‖ + 2eT

i (t)PiBiGi(xi, ei, t)ei(t) + 4εi(N − 1)‖BTPiei(t)‖
2 + 4δiN‖BTPiei(t)‖

2

+
1

εi

N
∑

j=1

j 6=i

eT
j (t)

(

DT
ijDij + MT

ijMij

)

ej(t) +
1

εi

N
∑

j=1

j 6=i

xT
j (t)

(

DT
ijDij + MT

ijMij

)

xj(t)

+
1

δi

N
∑

j=1

eT
j (t − hij)

(

ET
ijEij + N T

ijNij

)

ej(t − hij) +
1

δi

N
∑

j=1

xT
j (t − hij)

(

ET
ijEij + N T

ijNij

)

xj(t − hij)

+

N
∑

j=1

{

eT
j (t)Pijej(t) − eT

j (t − hij)Pijej(t − hij)
}

(22)

Si ∈ R
ni×ni and Sij ∈ R

ni×ni , matrices Wi ∈ R
mi×ni

and positive constants εi and δi which satisfy the LMIs




He {AKi
Yi + BiWi} Θ(Yi) Λi (Yi)
? Ω(Yi) 0
? ? −Γi (εi)



 < 0 (9)







He {SiAKi
} +

N
∑

j=1

Sji Ψi

? −Γi (εi)






< 0 (10)





−Yij YijE
T
ij YijN

T
ij

? −δiImi
0

? ? −δiIrij



 < 0 (11)





−Sij ET
ij N T

ij

? −δiImi
0

? ? −δiIrij



 < 0 (12)

the fixed gain matrix Fi ∈ R
mi×ni and the variable one

Gi(xi, ei, t) ∈ R
mi×ni are determined as Fi = WiY

−1

i and

(13), respectively. In (9) – (12), matrices Λi (Yi), Θ(Yi),
Ω(Yi), Ψi and Γi (εi) are given by (14) – (18), respectively.
Besides, tε in (13) is given by tε = limε>0,ε→0(t − ε)[2].

Then the overall error system composed of the N error
subsystems of (8) is robustly stable.
Proof : In order to prove Theorem 1, let us define
the following quadratic function as a Lyapunov function
candidate.

V(t)
4
=

N
∑

i=1

Vei
(t) +

N
∑

i=1

Vxi
(t) (19)

where Vei
(t) and Vxi

(t) are given by

Vei
(t)

4
= eT

i (t)Piei(t) +

N
∑

j=1

∫ t

t−hij

eT
j (θ)Pijej(θ)dθ (20)

Vxi
(t)

4
=xT

i (t)Sixi(t) +

N
∑

j=1

∫ t

t−hij

xT
j (θ)Sijxj(θ)dθ.

(21)
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d

dt
Vxi

(t) = xT
i (t)

[

He

{

AT
Ki

Si

}]

xi(t) +

N
∑

j=1

{

xT
j (t)Sijxj(t) − xT

j (t − hij)Sijxj(t − hij)
}

(24)

d

dt
Vei

(t) ≤ eT
i (t)

[

He

{

(AKi
+ BiFi)

T Pi

}]

ei(t) +

N
∑

j=1

{

eT
j (t)Pijej(t) − eT

j (t − hij)Pijej(t − hij)
}

+
1

εi

N
∑

j=1

j 6=i

eT
j (t)

(

DT
ijDij + MT

ijMij

)

ej(t) +
1

εi

N
∑

j=1

j 6=i

xT
j (t)

(

DT
ijDij + MT

ijMij

)

xj(t)

+
1

δi

N
∑

j=1

eT
j (t − hij)

(

ET
ijEij + N T

ijNij

)

ej(t − hij) +
1

δi

N
∑

j=1

xT
j (t − hij)

(

ET
ijEij + N T

ijNij

)

xj(t − hij)

(25)

d

dt
V(t) ≤

N
∑

i=1

eT
i (t)

[

He

{

(AKi
+ BiFi)

T Pi

}]

ei(t) +

N
∑

i=1

xT
i (t)

[

He

{

AT
Ki

Si

}]

xi(t)

+

N
∑

i=1















1

εi

N
∑

j=1

j 6=i

eT
j (t)

(

DT
ijDij + MT

ijMij

)

ej(t) +
1

εi

N
∑

j=1

j 6=i

xT
j (t)

(

DT
ijDij + MT

ijMij

)

xj(t)















+
N

∑

i=1















1

εi

N
∑

j=1

j 6=i

eT
j (t − hij)

(

ET
ijEij + N T

ijNij

)

ej(t − hij) +
1

εi

N
∑

j=1

j 6=i

xT
j (t − hij)

(

ET
ijEij + N T

ijNij

)

xj(t − hij)















+
N

∑

i=1

N
∑

j=1

{

eT
j (t)Pijej(t) − eT

j (t − hij)Pijej(t − hij) + xT
j (t)Sijxj(t) − xT

j (t − hij)Sijxj(t − hij)
}

(26)

d

dt
V(t) ≤

N
∑

i=1

eT
i (t)









He

{

(AKi
+ BiFi)

T Pi

}

+
N

∑

j=1

j 6=i

1

εj

(

DT
jiDji + MT

jiMji

)

+
N

∑

j=1

Pji









ei(t)

+

N
∑

i=1







1

δi

N
∑

j=1

eT
j (t − hij)

(

ET
ijEij + N T

ijNij − δiPij

)

ej(t − hij)







+

N
∑

i=1

xT
i (t)









He

{

AT
Ki

Si

}

+

N
∑

j=1

j 6=i

1

εj

(

DT
jiDji + MT

jiMji

)

+

N
∑

j=1

Sji









xi(t)

+
N

∑

i=1







1

δi

N
∑

j=1

xT
j (t − hij)

(

ET
ijEij + N T

ijNij − δiSij

)

xj(t − hij)







(27)

For the quadratic functions Vei
(t) of (20), its time derivative

can be computed as (22). Note that for derivation of (22),
Lemma 1 and the well-known inequality

2αT β ≤ δαT α +
1

δ
βT β. (23)

for any vectors α and β with appropriate dimensions and
a positive scalar δ have been used. Furthermore for the
quadratic functions Vxi

(t) of (21), its time derivative can
be computed as (24).

Firstly, we consider the case of BT
i Piei(t) 6= 0. In this

case, substituting the variable gain matrix of (13) into (22)

and some algebraic manipulations give the inequality of (25).
Thus, we can see that the relation of (26) for the quadratic
fucntion V(t) of (19) can be obtained. Since the inequality
of (26) can be rewritten as (27), if the matrix inequality
conditions of (28) — (30) are holds, then the following
inequality is satisfied.

d

dt
V(t) < 0 for ∀ξ(t) 6= 0 (31)

where ξ(t)
4
=

(

eT
1 (t), · · · , eT

N (t), xT
1 (t), · · · , xT

N (t)
)T

.
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He

{

(AKi
+ BiFi)

T Pi

}

+

N
∑

j=1

j 6=i

1

εj

(

DT
jiDji + MT

jiMji

)

+

N
∑

j=1

Pji < 0 (28)

He

{

AT
Ki

Si

}

+

N
∑

j=1

j 6=i

1

εj

(

DT
jiDji + ET

jiEji

)

+

N
∑

j=1

Sji < 0 (29)

ET
ijEij + N T

ijNij − δiPij < 0 and ET
ijEij + N T

ijNij − δiSij < 0 (30)

d

dt
V(t) =

N
∑

i=1

eT
i (t)



He

{

(AKi
+ BiFi)

T Pi

}

+
N

∑

j=1

Pij



 ei(t) +
N

∑

i=1

xT
i (t)



He

{

AT
Ki

Si

}

+
N

∑

j=1

Sij



 xi(t)

−
N

∑

i=1

N
∑

j=1

eT
j (t − hij)Pijej(t − hij) −

N
∑

i=1

N
∑

j=1

xT
j (t − hij)Sijxj(t − hij) (32)

He {AKi
Yi + BiWi} +

N
∑

j=1

j 6=i

1

εj

Yi

(

DT
jiDji + MT

jiMji

)

Yi + Yi





N
∑

j=1

Pji



Yi < 0 (33)

Yij

(

ET
ijEij + N T

ijNij

)

Yij − δiYij < 0 (34)

A11 =

(

−1.0 1.0
0.0 1.0

)

, A22 =

(

0.0 1.0
−1.0 −1.0

)

, A33 =

(

1.0 0.0
−1.0 −3.0

)

,

B1 =

(

0.0
1.0

)

, B2 =

(

1.0
1.0

)

, B3 =

(

1.0
0.0

)

,LT
11 =

(

1.0
0.0

)

, LT
22 =

(

1.0
2.0

)

, LT
33 =

(

1.0
1.0

)

,

DT
12 =

(

1.0
2.0

)

, DT
13 =

(

2.0
2.0

)

, DT
21 =

(

1.0
0.0

)

, DT
23 =

(

1.0
1.0

)

, DT
31 =

(

2.0
1.0

)

, DT
32 =

(

0.0
3.0

)

,

MT
12 =

(

2.0
1.0

)

, MT
13 =

(

2.0
2.0

)

, MT
21 =

(

1.0
0.0

)

, MT
23 =

(

0.0
3.0

)

, MT
31 =

(

1.0
1.0

)

, MT
32 =

(

3.0
1.0

)

,

ET
11 =

(

1.0
2.0

)

, ET
12 =

(

1.0
1.0

)

, ET
13 =

(

2.0
1.0

)

, ET
21 =

(

1.0
1.0

)

, ET
22 =

(

2.0
1.0

)

, ET
23 =

(

1.0
0.0

)

,

ET
31 =

(

2.0
2.0

)

, ET
32 =

(

2.0
2.0

)

, ET
33 =

(

1.0
0.0

)

, N T
11 =

(

1.0
0.0

)

, N T
12 =

(

1.0
1.0

)

, N T
13 =

(

2.0
3.0

)

,

N T
21 =

(

1.0
1.0

)

, N T
22 =

(

3.0
1.0

)

, N T
23 =

(

0.0
3.0

)

,N T
31 =

(

1.0
0.0

)

, N T
32 =

(

3.0
1.0

)

, N T
33 =

(

2.0
1.0

)

(35)

Next we consider the case of BT
i Piei(t) = 0. In this

case, from (22) and (24) the time derivative of the quadratic
function V(t) of (19) can be written as (32). If the matrix
inequalities of (28) — (30) are satisfied, then one can see that
the first and the second terms of (32) are negative. Besides,
the third and fourth terms are also negative. Namely in the
case of BT

i Piei(t) = 0, the relation of (31) holds too.
From the above, robust stability of the overall error system

is clearly guaranteed, because the nominal subsystem is
asymptotically stable.

Finally, we consider the matrix inequalities of (28) –

(30). By introducing the matrices Yi
4
=P−1

i , Yij
4
=P−1

ij and

Wi
4
= FiPi and pre- and post-multiplying both sides of the

matrix inequality of (28) and the first inequality of (30) by
Yi and Yij respectively, we have the inequality of (33) and
(34). Thus by applying Lemma 2 (Schur complement) to
(29), the second inequality of (30), (33) and (34), we find
that these inequalities are equivalent to the LMIs of (10),
(12), (9) and (11), respectively. Thus by solving the LMIs of

(9) – (12), the fixed compensation gain matrix is determined
as Fi = WiY

−1

i , and the variable one is given by (13). Thus
the proof of Theorem 1 is accomplished.

V. NUMERICAL EXAMPLES

In this example, we consider the uncertain large-scale
interconnected system consisting of three two-dimensional
subsystems, i.e. N = 3. The system parameters are given as
(35) and the time delay hij = 1.

Firstly, we choose the weighting matrices Qi ∈ R
2×2

and Ri ∈ R
1×1 (i = 1, · · · , 3) for the nominal subsystems

such as Q1 = diag (1.0, 2.0), Q2 = diag
(

1.0, 1.0 × 101
)

,
Q3 = I2, R1 = 1.0, R2 = 1.0 × 101 and R3 = 1.0 × 101,
respectively. Thus by using the solution of the algebraic
Riccati equation of (5), the optimal gain matrices Ki ∈ R

1×2

of (36) are derived.
Next, by using Theorem 2 we design the proposed de-

centralized variable gain robust controller. By solving LMIs
of (9) – (12), we have positive definite matrices Yi ∈ R

2×2,
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K1 =
(

−1.71572 × 10−1 −2.82843
)

, K2 =
(

−4.45866 −3.42538
)

× 10−1,

K3 =
(

−2.05272 4.11182 × 10−3
) (36)

Y1 =

(

3.8762 −2.4544
−2.4544 6.1636

)

, Y2 =

(

1.7105 2.3201 × 10−1

2.3201 × 10−1 3.4236

)

, Y3 =

(

4.7580 −1.6903
−1.6903 2.4082

)

,

WT
1 =

(

−6.8344
−1.8326 × 101

)

, WT
2 =

(

−1.2970 × 101

−1.2772 × 101

)

, WT
3 =

(

−2.4493 × 101

−6.5471

)

Y11 =

(

9.8827 −4.9281
−4.9281 5.0870

)

, Y12 =

(

2.0325 −1.8081
−1.8081 2.1079

)

× 101, Y13 =

(

6.2162 −4.8969
−4.8969 4.9965

)

,

Y21 =

(

2.1510 −1.7946
−1.7946 2.1244

)

× 101, Y22 =

(

5.7023 −1.2191 × 101

−1.2191 3.2416 × 101

)

,

Y23 =

(

1.2642 × 101 −7.5138 × 10−2

−7.5138 × 10−2 1.6080

)

, Y31 =

(

2.1671 × 101 −2.9690 × 10−1

−2.9690 × 10−1 6.7533

)

,

Y32 =

(

6.8967 −9.1273
−9.1273 1.7469

)

, Y33 =

(

9.2870 −1.1141 × 101

−1.1141 × 101 3.1129 × 101

)

,

S1 =

(

6.3037 1.7142
1.7142 4.9951

)

× 101, S2 =

(

1.1304 × 101 7.3226
7.3226 5.1528 × 101

)

, S3 =

(

6.9010 × 101 5.1262
5.1262 2.6386 × 101

)

,

S11 =

(

3.3758 × 101 −1.2279
−1.2279 3.7294 × 101

)

, S12 =

(

3.1356 × 101 2.9011
2.9011 3.3014 × 101

)

,

S13 =

(

3.4532 × 101 −1.0951
−1.0951 3.9176 × 101

)

, S21 =

(

3.3740 × 101 −1.2462
−1.2462 3.7207 × 101

)

,

S22 =

(

3.1634 × 101 2.9308
2.9308 3.2895 × 101

)

, S23 =

(

3.4273 × 101 −1.3811
−1.3811 3.9056 × 101

)

,

S31 =

(

3.3702 × 101 −1.2973
−1.2973 3.7209 × 101

)

, S32 =

(

3.1456 × 101 2.8880
2.8880 3.2906 × 101

)

,

S33 =

(

3.4314 × 101 −1.3550
−1.3550 3.8834 × 101

)

,

ε1 = 1.7117 × 101, ε2 = 1.3128 × 101, ε3 = 3.1313 × 101, δ1 = 1.4271 × 101, δ2 = 1.8887 × 101, δ3 = 3.7029 × 101

(37)

F1 =
(

−5.2064 −1.2109
)

, F2 =
(

−6.7449 −2.8876
)

× 10−1, F3 =
(

−2.6803 −2.1929
)

(38)

Yij ∈ R
2×2, Si ∈ R

2×2, Sij ∈ R
2×2, matrices Wi ∈ R

1×2

and positive scalars εi and δi of (37). Thus the fixed gain
matrices Fi ∈ R

1×2 can be computed as (38).

VI. CONCLUSIONS

In this paper, for the uncertain large-scale interconnected
system with state delays, a decentralized variable gain robust
controller which achieves not only robust stability but also
satisfactory transient performance has been proposed. Since
the derived LMI conditions in this paper are feasible, the
proposed decentralized controller synthesis is very useful.

In the future, we will extend the proposed controller to the
design problem for such a broad class of systems as large-
scale systems with general uncertainties, large-scale systems
with Lipschitz nonlinearities and so on.
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